
s

Technical Report UMIACS-TR-2002-12, Institute for Advanced Computer Studies,

University of Maryland at College Park, February 2002.

Also Computer Science Technical Report CS-TR-4330.
System Synthesis for Polymorphous Computing Architecture

Sumit Lohani and Shuvra S. Bhattachrayya

Department of Electrical and Computer Engineering, and

Institute for Advanced Computer Studies

University of Maryland, College Park

{slohani,ssb}@eng.umd.edu

Abstract

In general, polymorphous computing architectures are architectures that can
be dynamically customized to various applications. This report is concerned with
metrics, formulations, and algorithms for systematically synthesizing architectural
configurations and software for such architectures, particularly in the domain of dig-
ital signal processing (DSP).

In polymorphous system synthesis for DSP, one central aspect is managing
trade-offs between latency and throughput, which are critical metrics for DSP appli-
cations. In Sections 1-4 of the report, we develop a model for latency that is more
appropriate than conventional models of latency for DSP system synthesis, and
that takes into account central issues related to transient-state time, and we
develop precise relationships between latency and throughput using this frame-
work. Schedule post-processing strategies based on simulation and retiming that
reduce the latency and transient for a given throughput constraint are then pre-
sented, and their efficacy is substantiated with experimental results on a number of
practical DSP benchmarks. Also, a streamlined approach based on a graph-theo-
retic framework is suggested that leads to much faster execution of the proposed
schedule post-processing techniques.

Sections 5-6 of the report then deal with the problem of efficient mapping of an
application with stochastic execution times to a polymorphous computing architec-
ture in accordance with the time-varying performance requirements for several met-
rics, which may include even non-trivial metrics such as the coupled latency/
throughput metrics that are addressed earlier in the report. A comprehensive model
for system synthesis in this context is developed; results are developed on the com-
plexity of system synthesis under this model; and preliminary algorithms that
address the synthesis problem are presented, and evaluated experimentally.
1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
System Synthesis for Polymorphous Computing Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Department of Electrical and Computer
Engineering,Institute for Advanced Computer Studies,College
Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

103

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

nd

ning

ally

dule,

f the

nces

ic

nd

 of

ses

e

If one

eded

p

tput

rt,

ues
 1. Introduction

For an application with actors that have deterministic execution times, a

that is executing in a self-timed manner on a multiprocessor system, the begin

of execution is some finite transient that settles down to a periodic pattern eventu

[2, 37]. The period of this pattern depends on several factors, including the sche

the execution times of computational tasks, and the delays in the critical cycle o

dataflow graph [23, 30]. This phenomenon has been discussed in many refere

(e.g., see [2, 33]).

In many Digital Signal Processing (DSP) applications, for a given period

input sequence, only a periodic output sequence is useful, and we can withsta

only a limited delay in generating the periodic output sequence from the arrival

the input. It is often desirable to have this input-output delay (the time that elap

between arrival of the first input sample and generation of the first sample in th

periodic output sequence) as small as possible subject to a given sample-rate.

has an output buffer where one can store output values and deliver them as ne

(e.g., to maintain periodicity), the problem becomes one of a 3-way relationshi

between the throughput of the system, the output buffer size and the input-ou

delay. We will define this “delay” later as the periodic-output latency in this repo

and explore the associated 3-variable relationship in greater depth with techniq

for reducing periodic-output latency.

B

2

ed

pre-

 con-

ber of

il the

 pro-

s. The

ations

ata-

r

ge

s a

 of a

 set,
1.1. Definitions and notation

In the area of digital signal processing (DSP), dataflow is widely recogniz

as a natural model for specifying DSP applications. In dataflow, a program is re

sented as a directed graph, called adataflow graph, in which vertices, calledactors,

represent computations and edges represent FIFO channels, (also calledbuffers).

These channels queue data values, in the form oftokens, which are passed from the

output of one actor to the input of another. When an actor is executed (fired), it

sumes a certain number of tokens from its inputs, and produces a certain num

tokens at its outputs. The token input to an actor at an input edge stays there unt

actor has finished execution and it is only at the end of execution that the actor

duces tokens onto the output edges and consumes tokens from the input edge

edges in the dataflow graph may containinitial tokens, which we also refer to as

delays. Edges with delays can be interpreted as data dependencies across iter

of the graph. If there is a directed edge from an actor to an actor in the d

flow graph, then we say that is animmediate predecessor of , and is an

immediate successor of . Also, for a directed edge from actor to , the acto

 is called thesourceand thesink of that edge. The source and sink of an ed

 are denoted by and , respectively.

In this report, the set of all real numbers is denoted by , and denote

set whose elements are all -dimensional sets of real numbers. The maximum

finite set of real numbers is denoted by . The maximum of the empty

, is defined to be zero.

v1 v2

v1 v2 v2

v1 v1 v2

v1 v2

e source(e) sink(e)

ℜ ℜn

n

S max S()

max Φ()
3

ce

m of

That

,

ce if

test
Assuming that a space has a distance function that defines the distan

between any two points in space, triangle inequalityis said to hold in when the

distance between any two points and is less than or equal to the su

the distance between and any point and the distance between and .

is, in a space that satisfies triangle inequality, for any three points

, (1)

where represents thedistance functionthat gives the shortest distance

between any two points .

A space is called ametric space if the distance function is non-negative,

symmetric and satisfies the triangle inequality. That is, a space is a metric spa

for any three points ,

, (2)

, and (3)

, (4)

where represents the distance function that gives the shor

distance between any two points .

S

S S

a S∈ b S∈

a c S∈ c b

S a b c S∈, ,

distancea b,() distancea c,() distancec b,()+≤

distancex y,()

x y S∈,

S

a b c S∈, ,

distancea b,() 0≥

disancea b,() distanceb a,()=

distancea b,() distancea c,() distancec b,()+≤

distancex y,()

x y S∈,
4

ges

r C

o-

flow

er-

r fir-

soon

is

 data

the

l is

into
Example 1:Figure 1 shows an example of a dataflow graph. Numbers beside ed

indicate non-zero delays. There exists a delay or initial token of 1 between acto

and actor D.■

Dataflow models are a very useful specification mechanism for signal pr

cessing systems since they capture the intuitive expressivity of block diagrams,

charts and signal flow descriptions.

 Self-timed execution:
In a self-timed schedule, processor assignment and actor ordering are p

formed at compile time, but run-time synchronization is used to determine acto

ing times: a self-timed schedule executes by firing each actor invocation as

as it can be determined via synchronization that the actor invocations on which

dependent have all completed execution. Conceptually, the processor sending

writes data into a FIFO buffer, and blocks when the buffer is full; the receiver on

other hand blocks when the buffer it reads from is empty. Thus, the flow contro

performed at run-time.

It has been shown that eventually any self-timed execution settles down

A

C

B

D
1

Figure 1.An example of a dataflow graph.

A

A

5

olved

f

g for

xe-

that

exe-

ping

d exe-
a periodic repeating pattern provided that contention of shared resources is res

deterministically [4]. This repeating pattern can be exponential in the number o

delays that are present in the critical paths of the schedule [37]. While checkin

periodicity in the execution pattern, we consider the time for which any actor is e

cuting on a processor as well as the delay distribution in the application graph at

time instant. We define thetransient-intervalor simply thetransientin the execution

as the time from the beginning of the execution to the first time when a periodic

cution pattern is observed.

Example 2:Figure 2 shows an application graph that has 8 actors and the map

of these actors onto five different processors. Figure 3 represents the self-time

A

B

E D

C

Proc 1

Proc 4

Proc 3

Proc 2

Execution Times

A, B, F

C, H : 5

Figure 2. An example application graph.

: 6D

: 2G
E

G

H

F
Proc 5 : 4

: 3
11

1

Figure 3. Self-timed execution.

D

C

B F

G

H

E

D

B

H

EA

CG
F

D

C

B F

G

H

E

D

B

H

EA

CG
F

AProc 1

Proc 2
Proc 3

Proc 4

Proc 5

18
6

d

n-

own

nits.

ends

there

’s

con-

n

dding

or on

s-

 net-

to

d

cution pattern when the application graph in Figure 2 is executed in a self-time

manner. Two iterations of the schedule are carried out in 18 time units when sy

chronization costs are ignored, which gives an iteration period of 9. When the sh

self-timed schedule settles down, it spans a period repeating period of 18 time u

One can notice that at time instant 11, when C finishes execution, the transient

as at that instant the whole application has executed one iteration and after that

is a periodic pattern to follow.■

The evolution of a self-timed implementation can be modeled by Sriram

Inter Processor Communication (IPC) graphmodel [36]. Given an application

graph and an associated self-timed schedule, the IPC graph, denoted , is

structed by instantiating a vertex for each application graph actor, connecting a

edge from each actor to the actor that succeeds it on the same processor, and a

an edge that has unit delay from the last actor on each processor to the first act

the same processor. Also, for each application graph edge that connects

actors that execute on different processors, aninter-processor edgeis instantiated in

 from to . A sample application graph and a self-timed schedule are illu

trated in Figure 4, and the corresponding IPC graph is illustrated in Figure 5.

IPC costs (estimated transmission latencies through the multiprocessor

work) can be incorporated into the IPC graph model by explicitly includingcommu-

nication(sendandreceive) actors,and setting the execution times of these actors

equal the associated IPC costs.

It is well known that in the ideal case of unlimited bus bandwidth [30] an

Gipc

x y,()

Gipc x y
7

Pos-

nd

edule
deterministic execution times, the average iteration period for the As-Soon-As-

sible (ASAP) execution of an IPC graph is given by themaximum cycle mean

(MCM) of , which is defined by

, (5)

where denotes the execution time of an actor , and

denotes the sum of tokens on all the edges of cycle .

1.2. Latency in literature

In the engineering community itself, latency is defined in several ways a

Figure 4. An example of an application graph and an associated self-timed sch.
The numbers on the edges and denote nonzero delays.6 8,() 6 9,()

2

3

1

4

6

5

7

8

9

2

3

Self-Timed Schedule

Proc 1: (1, 2, 3, 4, 6)

Proc 2: (5, 7, 8)

Proc 3: (9)

Gipc

MCM Gipc() max
cycle C inGipc

exec v()
v C∈
∑
delay C()

=

exec v() v delay C()

C

8

stem

 use

ency

ned

s

l time
there is no universally accepted definitions of latency. Even in the embedded sy

design community, there are several different definitions of latency and people

the one that best suits the context. Some of the commonly used definitions of lat

are the following.

• For dataflow graphs and related models, latency has usually been defi

as theresponse time of the system to an input [18, 22, 35, 38]. Response time ha

been used in a general sense to refer to the time difference between the arriva

2r1

4

4s2

4s3

7r1

8r1

3

7

15

9

5

5

4

9

6

3

4

6

5

3

5

5

Proc 2 Proc 3Proc 1

1

1

1

2

3

91

2

3

4s1

6

5

5s1

7

8

9r1

9

Figure 5. IPC graph constructed from application graph of Figure 4. Num
bers besides communication actors denote communication costs.
9

y is

hus

e

ce-

of the

 it

t con-

s

rtex

arted

ency

et

ay

r-
of an input and the production time of the corresponding output. So, the latenc

the time required for the first invocation of the input to influence the output, and t

the latency corresponds to the critical path in the dataflow implementation to th

first output invocation that is influenced by the input. This interpretation of the

latency as the critical path is widely used in VLSI signal processing [25, 37]. Hen

forth, we will refer to this definition of latency asresponse-time latency.

• Latency according to the previous definition can be variable and data-

dependent. So, latency has also been defined in the literature as the maximum

time required for any invocation of the input to influence the output [31].

• In the context of computer networks, latency corresponds to how long

takes a message to travel from one end of a network to the other [31]. For mos

nections, a ping time of 100ms or lower is considered “low” latency; 100-500m

would be considered “moderate” latency; and 500-1000 ms would be “high”

latency.

• Latency has also been defined to be the first time at which the sink ve

fires for the first time in the schedule, assuming the execution of the schedule st

at time zero. Using this definition of latency, nested-schedules have a lower lat

than flat, “single appearance” schedules [6].

• Latency is also defined as the time required to process a single data-s

[11]. Note that this definition is different from the first definition because there m

be synthetic delays present in the system.

• People have also proposed variants of latency as more suitable perfo
10

t of

s of

d as

trol

pt of

on is

ow”

al.

t

lf-

eas-

ting

itly

ni-

if-

 the

n

mance indices for specific classes of applications. One example is the concep

control latency, as proposed in [21] for task assignment and scheduling problem

multiprocessor real-time control systems. This control latency is defined as a

weighted sum of feedback, command and monitoring latencies, which are define

follows in [21]. Feedback latency is the time required for a sensor activation, con

computation, and corresponding actuator manipulation. The time from the recei

the command from the operator or host computer to the corresponding actuati

defined ascommand latency. Monitoring latency is the time required to pre-process

the sensed data and then report it to host computer.

In all the above cases, irrespective of the exact definition of latency, a “l

value of latency is desirable and in many cases a “low” value of latency is critic

For synchronous DSP system implementation, the notion of input-outpu

timing present in the response-time latency is often adequate. However, for se

timed multiprocessor systems with DSP applications, which are becoming incr

ingly important due to problems with global clock distribution and other scaling

issues and also due to increasing levels of dynamics in DSP applications, equa

latency with response time is not as meaningful as a metric of latency that explic

takes the periodicity of the output pattern into account. A more appropriate defi

tion of latency for a periodic input signal could be stated intuitively as “The time d

ference between the appearance of the first periodic valid output instance and

application of the first input instance assuming an output buffer of given size”.

Mathematically, this can be explained in the following way. Suppose that a give
11

t the

ut

,

d.

s

he

ion

d 0

ut-

ow-

)

system is to satisfy a minimum throughput requirement . Suppose also tha

associated iteration period is represented by where ; the outp

buffer is represented by ; and the size of is represented by . By definition

must satisfy the following three conditions.

1. The buffer can hold at most output samples at any time.

2. Once stored in the buffer, an output sample can be delivered at will.

3. An output sample can not be stored in the buffer before it is generate

Let be an infinite sequence representing the arrival time

of input samples 1, 2,.... ,.... and be the production times of t

corresponding output samples. Define to be a binary-valued funct

that returns 1 if buffer holds the value of output sample at time instant , an

otherwise.

Also, for a given iteration period and buffer size , we define a valid o

put remapping (VOR) to be a sequence that satisfies the foll

ing four conditions.

 for all . (6)

If , then . (7)

For all such that , we have . (8

trmin

T T 1 trmin()⁄=

β β B β

β B

x1 x2 … xn …, , , ,

n y1 y2 … yn …, , , ,

containst n,()

β n t

T B

y′1 y′2 … y′n …, , , ,

y′n yn≥ n

y′n yn≠ containst n,()
1 if yn t y′n<≤

0 otherwise

=

n y′n L≥ y'n 1+ y'n–() T=
12

ed

as

f

OR

, to

d

si-

t

h.

. In

imum

alue

tes

ini-

he

iven

o

For all , , where and

. That is, at every time instant, the buffer population is bound

by . (9)

The minimum value of over all valid output mappings is defined

the periodic-output latency of the system. One can check if some given value o

satisfies all the above listed conditions [(6), (7), (8), (9)] and hence check if a V

associated with that value of exists, in one pass over all output samples. So

compute the minimum value of , one can start with the value of as zero an

check for its feasibility. This value of can be incremented until it becomes fea

ble i.e. there exists a VOR associated with that value of . Thus, The VOR tha

gives minimum can be found with reasonable complexity using this approac

This approach is anoff-linemethod for periodic-output latency computation and is

described in detail later in this section. This approach for computing minimum

can be streamlined using a binary search on the range of all possible values of

the streamlined approach that uses binary search, the range of the possible min

 values is halved repetitively on the basis of the feasibility of the average v

in the range of possible minimum values. This streamlined approach compu

minimum value more efficiently than the earlier approach, which computes m

mum value by checking the feasibility of values in an incremental fashion. T

problem addressed in this report is finding a schedule for an application, for a g

, such that the periodic-output latency is minimum, and the throughput is n

t 0≥ containst k,() B≤
kεSt

∑ St n ynεt{ }=

n 1 2 3 …, , ,{ }=

B

L y′n{ }

L

L

L L

L

L

L

L

L

L L

L

L

L L

B L
13

g to

 this

on-

As or

put

ome

 ini-

ons),

ns,

sam-

ut

input

d.

may

dule,

lid

r of

cy.

t

less than , when the application is executed in a self-timed manner accordin

that schedule on the given multiprocessor system. Henceforth, we will address

asTBL problem.Note that the individual processors in the multiprocessing envir

ment can be arbitrary processing components, such as DSP processors, FPG

microcontrollers.

When defined in this way, periodic-output latency depends upon the out

buffer size and requires the production times of output data to eventually bec

periodic. Until now, however we have not considered the fact that there may be

tial tokens present in a schedule (e.g., due to retiming and related transformati

for the given application. For a more general framework that includes initial toke

we have to distinguish between output values that are dependent on the input

ples to the application and the ones that are completely independent of the inp

samples (i.e., the ones that are dependent only on initial tokens). We define the

samples to the application to bevalid input values. Also, the output of an actor is a

valid output valueif and only if at least one of the input values to that actor is vali

Due to the presence of the initial tokens, some number of initial output samples

be invalid output values. So, in case there are initial tokens present in the sche

the definition of periodic-output latency needs to be modified such that only va

output samples are considered.

The formulation stated above also implies that an increase in the numbe

initial tokens can lead to an increase in the above defined periodic-output laten

This introduces one more parameter in the relationship between periodic-outpu

1 T⁄

B

14

 on

, and

rd

ise

e

der-

g

e of

istant.

e, jit-

ion-

sight
latency , buffer size , and iteration period , but we will mainly concentrate

the relationship between , and , since we are assuming that the schedule

hence the delay distribution, is given a-priori. From now on, in this report, the wo

“latency” has been used to describe the periodic-output latency, unless otherw

stated. Figure 6 illustrates a system with no output buffer. Figure 7 illustrates th

same system when an output buffer of appropriate size is present and helps un

stand the relationship between periodic-output latency, buffering and through-

put(=) of the system. One can observe that the buffer helps achieve lower

periodic-output latency by storing the output samples temporarily and deliverin

them such that the associated VOR has a lower periodic-output latency.

Since a period of the execution pattern may contain more than one cycl

dataflow graph, in general, samples of the output sequence need not be equid

Jitter is a measure of unequal distances in the output sequence. In the literatur

ter has been defined in several ways [28, 39]. This is one attribute whose relat

ship with the other parameters described above can be monitored to get more in

L B T

L T B

Transient−interval

2T2T

Input sequence

Output sequence

Figure 6. Illustration for a system with no output buffer.

1 T⁄
15

ay

les

ro jit-

or

zero

es

 to

iev-

ay

en for

lue

ing

tion.
into the concepts introduced above, but is out of the scope of this report. One m

define jitter as the difference between the mean distance between output samp

and distance between two consecutive output samples. We are designing for ze

ter, which is a reasonable goal if the jitter tolerance of an application is unknown

not specified to the designer/compiler. Exploring trade-offs associated with non-

jitter allowance would be a useful direction for future work.

Intuitively, throughput would increase as periodic-output latency increas

for a fixed buffer size, as larger periodic-output latency gives us more leeway in

choosing the time instants when we can output values, which may correspond

improved throughput. An increase in buffer size leads to equal or improved ach

able throughput. Also, for a fixed throughput value, an increase in buffer size m

compensate for decrease in periodic-output latency in some cases. Note that ev

a fixed output buffer one can find a set of (periodic-output latency, throughput) va

pairs, as the execution can be done only for finite length of time. We are assum

that one has execution time estimates or a trace of the execution of the applica

Latency

Input sequence

T

Output sequence

(buffering)

Figure 7. Illustration for latency, throughput and output buffer.
16

n be

tem

ta-

ta

eter-

-

nd

d

or

e.

f the

he

nt

e

lid.

n is

 Peri-
The relationship between buffer size, periodic-output latency and throughput ca

calculated using anoff-line throughput-latency computationscheme, which after fix-

ing the throughput and buffer size, gives the periodic-output latency for the sys

from the execution record of the graph. This off-line throughput-latency compu

tion scheme is as follows.

The data for off-line computation are the time instances of the output da

samples for the periodic input. For a given buffer size and throughput, one can d

mine the periodic-output latency using the off-line method, which can be imple

mented by first starting with the lowest periodic-output latency value possible a

seeing if that periodic-output latency is satisfiable using the given buffer size an

throughput. If not, the periodic-output latency value is increased and checked f

satisfiability again, until we find a periodic-output latency value that is satisfiabl

We call this an off-line method since we have already simulated the execution o

system or have obtained a trace from an actual execution and are computing t

minimum satisfiable periodic-output latency only after we have all of the releva

data.

One can observe that in the case of deterministic execution times, for a

buffer size of zero, the periodic-output latency is approximately equal to the tim

taken for execution to settle to a periodic pattern, if the output at that instant is va

Therefore it is helpful to have a schedule post-processing strategy to reduce thetran-

sientin the execution. One should note that the transient in a self-timed executio

not same as the periodic-output latency as illustrated in Figure 6 and Figure 7.
17

n-

ne of

ro-

The

e in

.

g the

ed-

f the

 So one

 algo-

uce

ela-

ited

cution

st

n

odic-output latency is defined for a given output buffer unlike the case of the tra

sient, where there is no output buffer.

1.3. Overview

This report presents two schedule post-processing strategies, the first o

which is to reduce the transient in execution pattern. The other schedule post-p

cessing scheme, based on retiming, can be used to reduce latency for a given

throughput constraint, that is, it gives us an approach to solve the TBL problem.

schemes proposed are discussed in conjunction with an initial scheduling schem

the later sections of this report to give a complete approach to throughput-con-

strained latency minimization or throughput-constrained transient minimization

This approach is divided into two phases. The first phase consists of schedulin

graph using some known throughput-constrained or throughput minimizing sch

uling technique such that the schedule satisfies the throughput constraint. One o

proposed schedule post-processing techniques constitutes the second phase.

can use the appropriate schedule post-processing technique in phase 2 of the

rithm depending on whether the aim is to reduce the transient interval or to red

the periodic-output latency i.e., the TBL problem. This report also explores the r

tionship between the output buffer size and the periodic-output latency to a lim

extent. At the end, a new approach is suggested that leads to much faster exe

of the proposed schedule post-processing techniques. This approach utilizes a

known result relating the starting time of th invocation of an actor to the longe

-delay path to that actor and finds out the starting time of any invocation of a

m

m

18

this

sched-

s for

tput

ach

oper-

imu-

ent

put-

 set

re to

var-

icies,

pport

of

ible

n

chi-
actor using an efficient graph-theoretic framework.

The next section briefly describes the work done in the areas related to

report. Section 3 describes our two-phased approach consisting of a standard

uling scheme for phase 1 and the proposed schedule post-processing scheme

phase 2. Experimental results for the schedule post-processing strategies are

reported. Section 4 presents our streamlined approach to optimizing periodic-ou

latency for deterministic contention-free systems. This is a graph-theoretic appro

that does not require event-based simulation and is based on mathematical pr

ties of graphs and Petri-net theory [30], which leads to faster execution of the s

lation-based, two-phased approach described in Section 3.

Polymorphic is defined as having, taking, or passing through many differ

forms or stages. In general, apolymorphous computing architecture(PCA) refers to

any computing hardware that is modifiable. Commonly used polymorphous com

ing architectures, such as the Raw architecture [40], implement only a minimal

of mechanisms in hardware so as to allow the compiler to customize the hardwa

different applications. Various high-level attributes of these architectures can be

ied, such as inter-processor message routing, caching policies, scheduling pol

processor voltages, resource allocation to computing units, and architectural su

for synchronization during inter-processor communication. This reconfigurability

PCA may help satisfy varying performance requirements that might not be poss

if the architecture is fixed. This report also deals with the problem of mapping a

application with stochastic execution times onto a polymorphous computing ar
19

uch

 still

ppli-

 per-

-

that

 peri-

ort is

rics.

d the

in

esults
tecture in accordance with dynamically-varying performance requirements. In s

a scenario, the performance requirements may change while the application is

executing. This problem is commonly encountered in various defense related a

cations. One example of this is a missile system which operates under varying

formance requirements. A comprehensive model is suggested using which one

would be able to deal with the problem of finding efficient mappings for continu

ously changing performance requirements. The motivation is to provide a model

is able to handle performance requirements of even non-trivial metrics such as

odic-output latency as defined in the report. The approach suggested in the rep

quite general in nature and can handle diverse applications for a variety of met

The PCA software synthesis problem described above is formulated an

motivation for our model to solve the problem and an introduction to it is given

Section 5. Section 6 describes the model in detail. Section 7 summarizes the r

and discusses the efficacy of the proposed techniques and the model.
20

tera-

n the

 com-

n of

rob-

se, a

ng

rative

s a

lso

-

e

 is

s

ies of

ors to
 2. Background

Many scheduling techniques can be found in the literature to reduce the

schedule makespan for a dataflow graph or to maximize the throughput of an i

tive dataflow graph [5, 7, 41, 10]. Bokhari’s algorithm [7] is an optimal algorithm

for mapping a chain structured task graph onto a linear chain of processors. O

other hand, the throughput maximization scheme by Banerjee et al. [5] tries to

pute a schedule for best throughput by identifying the problem as a combinatio

optimal task/processor assignment to pipeline stages as well as a scheduling p

lem. The scheduling problem was solved by them in two phases. In the first pha

trade-off between clustering and parallelism was found using iterative scheduli

techniques, and in the next phase the coarse solution was optimized through ite

refinement techniques.

Alternative scheduling problems, such as finding a schedule that satisfie

throughput constraint and has minimum response time and vice-versa, have a

been studied [13, 19, 3]. Choudhry et al. [13] have solved this problem in a rela

tively constrained framework, where the “execution signature” or “response tim

function” for each node of the dataflow graph, is given. The execution signature

defined as the performance speedup as a function of the number of processor

employed. Their approach is to decompose any serial-parallel graph into a ser

serial and parallel components and then find the optimal assignment of process
21

en

r

xe-

hat

ru-

ta-

um

e

e

solu-

on-

st-

ro-

ed

ing

inimi-

hat
different tasks in the task graph so that the response time is minimum for a giv

throughput constraint and vice-versa. Aiken and Nicolau [1] find “pattern” in the

execution history to find a schedule that maximizes throughput for a loop. Thei

“pattern” in the execution history can be related to the periodicity in self-timed e

cution.

Solving the TBL problem is different from the earlier work in the sense t

this periodic-output latency relates to the settling time of the pattern, which is c

cial in many DSP applications. For the transient-reduction problem, it is compu

tionally intensive to find the settling time of a given schedule and hence a minim

transient schedule. There are not many known properties of a graph that can b

directly related to a reduced transient.

The TBL problem is reduced to two separate problems, one to satisfy th

throughput criterion and other to reduce periodic-output latency. We provide a

tion to the TBL problem by first finding a schedule that satisfies the throughput c

straint and then processing the schedule thus obtained using the proposed po

processing technique to obtain the final schedule. The latency-reduction post-p

cessing strategy involves generating schedules by retiming the schedule obtain

after phase 1 and choosing the one with minimum periodic-output latency. Retim

techniques have been used to solve a variety of problems such as cycle-time m

zation and area minimization [24, 27]. One contribution of this report is to show t

retiming also plays an important role in reducing transient and periodic-output

latency and to develop efficient retiming techniques that achieve these goals.
22

nsient

ake

aph

self-

ent

rs on

f

the

phase

tially

pec-
If one wants to reduce the transient-interval instead of periodic-output

latency after phase 1, one can apply schedule-post processing technique for tra

reduction in phase 2. In this report, the approach to reduce the transient is to t

feedback from the execution pattern of a schedule obtained from a dataflow gr

and refine it. In our proposed technique, the way we extract a schedule from the

timed execution of an application ensures that in the final schedule the assignm

of actors onto the processors would be same, and the order of execution of acto

the processors would be just a shifted version (phase difference) of the order o

actors in the schedule at the end of phase 1. Also, the distribution of delays in

final schedule is the same as some retimed version of the schedule obtained by

1. One should also note that this schedule post-processing technique is essen

retiming the initial schedule and re-ordering the execution of actors on their res

tive processors.
23

r

how

 a

.

, a

-

hose

nd

on.

ow

is

the

ling

aint

ust as

used

 as

neral
 3. Algorithm and experimental results

In this section, we explain our algorithm for solving the TBL problem or fo

reducing the transient for a given throughput constraint. This algorithm shows

the schedule post-processing technique for latency-reduction can be used with

known throughput constrained scheduling technique to solve the TBL problem

The TBL problem has been addressed in two phases. In the first phase

schedule that satisfies the throughput constraint is found using an approach

described in [19]. Any algorithm for throughput-constrained or throughput-mini

mized scheduling can be used in the first phase. For prototyping purposes, we c

the technique of [19] since it is a particularly well-documented one. In the seco

phase, we try to minimize periodic-output latency as described in the last secti

Specifically, Hoang [19] describes a scheduling technique to schedule a datafl

graph such that the throughput is greater than or equal to a given minimum. Th

technique has been used as a “subroutine” in our proposed algorithm to solve

TBL and transient-reduction problems. As mentioned above, any other schedu

technique that gives a schedule that satisfies a pre-specified throughput constr

can be used in place of Hoang’s technique. Hoang’s technique has been used j

an example to explain and experiment with the proposed algorithm that can be

to solve the problem of transient-reduction with a throughput constraint as well

the TBL problem. Thus, our schedule post-processing techniques are quite ge
24

ent,

ne

t sat-

ing

.

exe-

ion

d be

a

ique

and

ient
in nature and can be applied to schedules to generate modified schedules with

smaller transient or periodic-output latency.

3.1. Phase 1

To compute a schedule that satisfies the minimum throughput requirem

Hoang’s algorithm as described in [19] is used. As we have discussed above, o

may use any other suitable technique here for obtaining the initial schedule tha

isfies the given throughput constraint.

3.2. Phase2

For use in phase 2, we will describe two different schedule post-process

techniques, a transient-reduction technique and a latency-reduction technique

Reducing transient is beneficial for self-timed iterative systems. Settling of the

cution pattern fully exposes parallelization in the periodic pattern. Reducing the

transient would help one exploit hitherto underutilized parallelism in the applicat

much sooner. To solve the TBL problem, our latency-reduction technique shoul

applied for phase 2. If the aim is to find a schedule with minimum transient for

given throughput constraint, then one should use our transient-reduction techn

for phase 2. In this subsection, first we explain the transient-reduction technique

then the latency-reduction post processing scheme.

3.2.1 Transient-reduction scheme

A heuristic based on feedback from simulation is used to reduce the trans

in the following way.
25

ttern

sys-

d by

ern

nted

s no

tion

ern,

ime

ta-

e

ph,

 start

ould

f the

ution

y.

ture

osing

a few
The schedule is simulated to execute in a self timed manner and the pa

is observed when it becomes periodic. Since we know that the throughput of the

tem is greater than or equal to the given throughput constraint, a schedule forme

extracting the order of execution of actors in a given period of the periodic patt

would satisfy the throughput constraint, as a self timed execution can be represe

by a Markov process. A Markoff process is a stochastic process whose past ha

influence on the future if its present is specified [29]. Since in a self-timed execu

also, only the present state influences all the future states in the execution patt

self-timed execution can be considered a Markoff process. The state at some t

instant during self-timed execution is comprised of all the information of the da

flow graph that is pertinent for future execution, such as delay distribution at th

edges of the dataflow graph, execution status of every actor of the dataflow gra

etc. So if we start with the schedule derived from the order of execution, at the

of the period of the throughput-constrained schedule, the new schedule also w

result in a throughput that is no less than the throughput constraint. The state o

system at the instant when the transient ends, combined with the order of exec

of actors during that periodic pattern, is output as the new schedule.

The rationale for this heuristic can be further explained in the following wa

A self-timed execution can be represented as a Markoff process. That is, the fu

execution of the system depends only on the present state of the system. Supp

that time is managed in discrete steps, given the present state, there could be

states that the system can never reach. This introduces the notion ofdistance
26

tate

om

has

tern

sched-

.g.,

le

ew

le is

o the

that

 sam-

t

tion

e is

-

between two states in a self-timed execution. One can define distance from a s

 to another state as the time taken for the system to reach the state fr

state . Note that the distance of from may be different than distance of

from . So, it could be helpful to know the state of the system when the pattern

become periodic as starting from a statecloser to this state, that is, starting from a

state that is at a lesser distance from this state, could take us to a periodic pat

faster than starting from some arbitrary state. Hence, the state of the system is

recorded at the time instant when the pattern has become periodic and a new

ule is formed based on that. Also, minimization of delays in the dataflow graph (e

through retiming) may give us smaller transient, as more delays would lead to

longer time in generating valid outputs.

One can transform a multiple output node graph into an equivalent sing

output node graph by introducing an edge between every output node and a n

synthetic output node with zero execution time. We assume that an output samp

generated when all output nodes have executed during a particular iteration. S

execution of the output node symbolizes the generation of all output samples for

iteration. A data source, such as a digitized microphone output, that generates

ples periodically, is modelled by adding an input actor with edges to all the star

actors in the dataflow graph and a self-loop edge with one token and with execu

time equal to the input period. A pseudocode for our transient-reduction schem

shown in Figure 8.

In this algorithm,calculatePeriodis a function that takes the execution sta

S1 S2 S2

S1 S2 S1 S1

S2
27

ern

d is

 the

ant.

n at

om

)

is the

ecut-

or as

nt of
tistics as input and calculates the time when the transient of the execution patt

ends.Stats() represents the execution statistics of schedule. Execution statistics

for any schedule can be found by simulating the execution of that schedule an

composed of the token distribution around the edges of the dataflow graph and

information about execution of every actor in the dataflow graph at any time inst

The functiongenerateSchedule takes a time instant and execution statistics as

inputs and outputs a schedule in the required format using the state informatio

time . It finds the order of execution of various actors on processors starting fr

time and the distribution of tokens on all inter-processor communication (IPC

edges at that instant. This order of execution of actors on different processors

order of execution that is followed in the output schedule. In case an actor is ex

ing on some processor at time instant , the order of execution includes that act

the first one to execute on that processor. The algorithm forgenerateSchedule is

described in Figure 9. Note that the final schedule does not alter the assignme

Function transientReduction

Input Schedule

Output Improved schedule

execute ()

= calculatePeriod(Stats())

= generateSchedule(, Stats())

Output

S

S′

S

L S

S′ L S

S′

Figure 8. Pseudocode for transient-reduction post-processing.

S S

t

t

t

t

28

 the

at

 at

on)

 fin-

he

end

the

exe-

ely.
actors to processors. It only changes the numbers of tokens on IPC edges and

order of execution of these actors on processors.

One way to improve this heuristic is to introduce a few temporaryfirst-itera-

tion actors on the processors where some actor is in the middle of execution

time instant . On those processors for every actor in the middle of execution

time , we can introduce a first-iteration actor — effectively, a NOP (no-operati

— that executes for the time interval between and the time when that actor

ishes execution, and does not execute in any of the later iterations. This way, t

execution of this new schedule will begin with the state the system was in at the

of the transient. This would reduce the periodic-output latency significantly but

schedule can not be called strictly self-timed as first-iteration actors should be

cuted only once, whereas all actors in self-timed schedule are executed iterativ

Function generateSchedule

Input Time instant , Stats() of the input schedule

Output Final schedule

1. Record the token distribution on all IPC edges at
2. for each processor{

Record the order of execution of actors starting from

}

3. Output the schedule from the information gathered in

steps 1 and 2.

t S S

Sf

t

t

Sf

Figure 9. Pseudocode for functiongenerateSchedule.

n

t n

t

t n
29

n

xecu-

xe-

.

dule

)

cture

.

a-
Example 3:Figure 10 shows the self-timed execution pattern when first-iteratio

actors are used for the application graph shown in Figure 2. In the self-timed e

tion shown in Figure 3, to start with the state at 7 time units (when finishes e

cuting its first invocation), we introduce first-iteration actors in the schedule as

shown in Figure 10.■

For the results reported in the later part of the report,generateSchedule, as

described in Figure 9, was used, which does not introduce first-iteration actors

Figure 11 shows the pseudocode to compute a minimum transient sche

that satisfies a throughput constraint().Phase1Algois a function that represents

the algorithm used in phase 1. It takes (inverse of throughput constraint

and an application graph as inputs and outputs a schedule.

The multiprocessor architecture that we consider is a bus-based archite

in which a group of processors communicate by means of a single shared bus

Table 1 shows the result for several schedules for four applications:FFT, QMF,

Karp andMeas.These represent, respectively, a fast Fourier transform, a quadr

E

Figure 10. Self-timed execution with first-iteration actors denoted by T.

D

B

H

E

CG
F

D

C

B F

G

H

E

D

B

H

EA

CG
F

A

18

T
T
T

T

Proc 3

Proc 4

Proc 5

Proc 1

Proc 2

1 T⁄

T trmin
30

tech-

ed on

T

FT

tions

n

ks
ture-mirror filter bank, a music synthesis application based on Karplus-Strong

nique, and a measurement application. FFT applications are of three types bas

examples given in [26];fft1, fft2 andfft3; and each of these value represents an FF

application with a particular set of execution times for actors. In this report, an F

is application represented asfftx.y.z,wherex, y andz are integers. The symbolx

takes values 1, 2 and 3 and each of this value represents one of the FFT applica

out of fft1, fft2andfft3. The y value represents the inter-processor communicatio

(IPC) cost among actors when the application executes. Thezvalue represents how

many processors are employed to run the application. Thus,fft1.1.2 represents an

fft1 application with IPC cost of 1 to be scheduled on 2 processors.

Application

fft1.1.2 200 157 150 .044

fft1.2.5 200 319 298 .066

Table 1. Results of the algorithm described in Figure 11 for various benchmar

with deterministic execution times.

Input , Application graph

Output Final schedule

 = Phase1Algo(,)

 = transientReduction()

Output

T G

S′

S G T

S′ S

S′

Figure 11. Pseudocode to find minimum-transient schedule for a given .T

T Rold Rnew µr
31

ks
fft1.1.5 180 912 739 .189

fft1.1.10 70 57 56 .017

fft1.1.10 70 57 78 -.368

fft1.5.5 200 364 163 .552

fft1.5.10 150 1182 1064 .099

fft1.10.10 200 4463 4454 .002

fft1.10.5 150 4220 3830 .092

fft2.1.2 225 1500 1400 .066

fft2.1.10 125 11641 11079 .048

fft2.5.10 150 4885 4500 .0788

fft2.10.10 210 3710 2910 .215

fft2.5.5 300 1200 1070 .108

fft3.1.2 300 500 500 0

fft3.1.10 100 226 225 .004

fft3.2.2 300 500 400 .2

fft3.5.5 300 1000 710 .29

fft3.5.8 225 1655 125 .924

fft3.10.5 300 2020 1960 .029

fft3.10.12 180 6370 5770 .094

qmf2 150 400 350 0.125

qmf3 150 518 483 .0675

qmf4 150 612 468 0.2353

Application

Table 1. Results of the algorithm described in Figure 11 for various benchmar

with deterministic execution times.

T Rold Rnew µr
32

ppli-

eas

hed-

he

ent,

ms

the

, as

ks
Similarly, QMF, Karp and Meas applications are represented asqmfx, karpx

andmeasx, wherex is an integer that represents the number of processors the a

cations needs to be scheduled on. For example,qmf2, karp3andmeas2represent

QMF application on 2 processors, a Karp application on 3 processors, and a M

application on 2 processors, respectively.

The figure of merit for the transient-reduction scheme is defined as

, (10)

where is the time instant when the transient ends in the execution of the sc

ule input to transient-reduction post-processing. The symbol represents t

corresponding time for the final schedule, i.e., the schedule output bytransientRe-

duction. The symbol denotes the inverse of the minimum throughput requirem

i.e., . It can be seen from results tabulated in Table 1 that for syste

with deterministic execution times, there is a reduction in the transient in most of

cases. Since our transient-reduction scheme does not use first-iteration actors

karp2 450 800 700 0.125

karp3 450 800 800 0

karp4 450 900 800 0.1111

meas2 250 700 650 0.0714

Application

Table 1. Results of the algorithm described in Figure 11 for various benchmar

with deterministic execution times.

T Rold Rnew µr

µr

µr Rold Rnew–() Rold⁄=

Rold

Rnew

T

T 1 trmin()⁄=
33

dule

iginal

ady

d in

 10%

t set-

.

meet

nt in

ion,

is

n a

put

ry

r get-

ion
explained earlier, and may inject more initial tokens, it may happen that the sche

generated by the transient-reduction scheme has a worse transient than the or

schedule. In one case, the transient increased by 21 time units beyond an alre

small transient of 57 time units. One can see that out of 28 experiments tabulate

Table 1, there was an improvement of more than 5% in 19 cases, of more than

in 11 cases and of more than 20% in 6 cases.

In the case of non-deterministic execution times, the execution does no

tle to a periodic pattern unlike systems with deterministic execution times. The

notion of a transient has not been defined by us for non-deterministic execution

Though phase 1 of the algorithm can be applied to this case to get a schedule to

the throughput criterion, it is not meaningful to use phase 2 to reduce the transie

case of non-deterministic execution times because in non-deterministic execut

the execution pattern does not, in general, becomes periodic.

3.2.2 Latency-reduction scheme

Unlike the case of the transient, periodic-output latency, as defined in th

report, can be calculated both for deterministic and non-deterministic systems.

Using the off-line method, which has been described in detail in Section 1.1, give

periodic-output latency and an output buffer size for a system, the through

of the system can be calculated and vice-versa. The results of scheduling with an

aim to reduce periodic-output latency, using a technique that is conceptually ve

similar to the transient-reduction technique, are tabulated in Table 2. Here, afte

ting an initial schedule after phase 1, the average iteration period of the execut

L B
34

stem

e in

s in

 iter-

es,

tor

ally,
pattern is chosen as and is found for that in phase 2. The state of the sy

at the end of is used to find out the final schedule in the same way as is don

transient-reduction scheme. We introduce a few definitions that are useful in

explaining the experimental results. In case of non-deterministic execution time

an application, execution times for various actors may vary from one execution

ation to the other because of data-dependency of execution times, cache miss

interrupts, etc. The number of possible execution times taken by an actor is

denoted by . We denote the set of possible execution times taken by an ac

as { }. The probability of occurrence of a possible execution time

for actor , is denoted by , for all . Thedegree of non-determinacy

is a measure of overall amount of non-determinacy in the application, specific

in the actor execution times, and is defined as

, (11)

where denotes the mean execution time of actor and is defined as

. (12)

The figure of merit for latency-reduction is defined as

T L T

L

i

ni ni i

ti1 ti2 … tini
, , , tik

i pik k 1 … ni, ,=

λ

λ

pik tik ti mean,–()2{ }
k 1=

ni

∑

i
∑

ti mean,{ }2

i
∑

---=

ti mean, i

ti mean, tik
k 1=

ni

∑

ni⁄=

µl
35

r a

es,

le.

from

ution

ils.

ed in

tion

fter

uc-
, (13)

where and are the periodic-output latencies of the schedule input to

latency-reduction post-processing and the final output schedule respectively, fo

given and .

One can see from Table 2, that in case of non-deterministic execution tim

in about half of the cases, this approach does not lead to a low-latency schedu

This is expected, as in our approach we are trying to reduce latency by starting

a state that is expected to be closer to the state at , but, because the exec

times are non-deterministic, this approach of starting from some better state fa

We present a new latency-reduction post processing strategy that can be appli

phase 2 to solve TBL problem. The pseudocode for this improved latency-reduc

post-processing approach is shown in Figure 12.

Here, we try to find the best possible retiming of the schedule obtained a

µl Lold Lnew–() Lold⁄=

Lold Lnew

T B

Application T B

fft1.5.2 .058 201 5 325 419 -.289
.146 212 5 277 308 -.111
.264 212 5 549 846 -.541

fft1.5.5 .058 179 5 375 648 -0.728
.146 178 5 997 821 0.176
.264 174 5 3147 3147 0

fft1.5.10 .058 106 5 182 288 -0.582
.146 105 5 425 385 0.094
.264 103 5 337 604 -0.792

Table 2. Results for latency-reduction using a method similar to transient-red

tion approach for FFT graphs with non-deterministic execution times.

λ Lold Lnew µl

Lold
36

ctor

med

h a

cy.

cces-

imi-

s

r.” A

le

ns on

osi-

e

tive

(d)

d in

the

en
phase 1, from the point of view of reducing latency. We do this by choosing the a

whose retiming reduces the latency most, which is found by simulating the reti

schedule. By doing this repetitively, until there is no improvement, we end up wit

schedule that is a retimed version of the original schedule, but with lower laten

With respect to the pseudocode given in Figure 12, apositive retiming step

[12] for an actor is defined as “removing one delay from each of the edges to su

sor actors and adding one delay to each edge from the predecessor actors.” S

larly, anegative retiming stepis “removing a delay from each of the incoming edge

to the actor and adding one delay to each of the outgoing edges from the acto

positive or negative retiming step is called alegal retiming stepif no edge has a neg-

ative delay on it after retiming.

Example 4:Figure 13 illustrates these concepts. Figure 13(a) shows an examp

dataflow graph. The values alongside the edges represent the numbers of toke

them. Figure 13(b) shows the distribution of delays on the edges after a legal p

tive retiming step on actor D of the dataflow graph. The result of a legal negativ

retiming step on actor D of the dataflow graph is shown in Figure 13(c). A nega

retiming step on actor B of the data flow graph is shown to be illegal in Figure 13

as it leaves a negative delay on one of the dataflow graph edges.■

Using the off-line latency-computation method, which has been describe

detail in Section 1.1, given a throughput and output buffer size for the system,

periodic-output latency of the system can be calculated and vice-versa. Function

findL is a function that outputs the periodic-output latency for schedule for a giv

B

S

37

n in

 solv-
 and using the off-line latency-computation method.

Pseudocode that gives our approach to solving the TBL problem is show

Figure 14. Experiments were conducted to test the efficacy of this approach in

ing the TBL problem. The results are tabulated in Table 3. From the results for

Function latencyReduction

Input Schedule , ,

Output Final schedule

;

while (<){

= set of schedules obtained after applying any

legal retiming step on .

for each belonging to {

if satisfies throughput constraint {

;

}
}

;

 is the schedule corresponding to .

if (<){

;

;

}
}

;

Output and

S T B

Sf

presentL=findLS T B, ,()
Lmin 0=

Lmin presentL

R

S

Si R

Si

Li findL(Si T B), ,=

Lmin minimum of all Li s=

Smin Li

Lmin presentL

S Si=

presentL = Lmin

Sf S=

presentL Sf

Figure 12. Pseudocode for latency-reduction post-processing.

T B
38

benchmarksfft1.5.5, qmf4 and karp10 andmeas2 in Table 3, one can see that the

heuristic works well and there is a significant improvement in periodic-output

B

D

C

EA

2

2

0
0

0

B

D

C

EA

0

0

2
0

0

B

D

C

EA

2

1

1
-1

0

B

D

C

EA

1

1

1
0

0

(a) A dataflow graph

(b) A legal positive retiming step on actor D

(c) A legal negative retiming step on actor D

(d) An illegal retiming step on actor B

Figure 13. Illustration for retiming.
39

latency.

Application

fft1 0 180 185 185 0

fft1 .0586 181 382 189 .5052

fft1 .1171 179 614 180 .7068

fft1 .2347 173 885 741 .1627

fft1 .3656 158 771 647 .1608

fft1 .3594 176 971 971 0

fft1 .5245 191 1022 797 .2201

fft1 .6059 167 3197 904 .7172

qmf 0 124 125 125 0

qmf .0123 123 685 419 .3883

qmf .0844 123 575 575 0

qmf .1453 125 778 778 0

qmf .2561 113 4112 3099 .2463

qmf .318 129 2260 1026 .5456

qmf .3928 122 3699 1777 .5201

Table 3. Results of applyinglatencyReduction to non-deterministic graphs.

Input , Application graph

Output Final schedule

 = Phase1Algo(,)

=latencyReduction(, ,)

Output

T G

S′

S G T

S′ S T B

S′

Figure 14. Pseudocode to solve the TBL problem.

λ T Lold Lnew µl
40

nch-

,

g

Figure 15 shows plots of vs. corresponding to Table 3 for these be

marks. It can be seen that the improvement does not follow a monotonic trend

which is understandable as the algorithm finds out the best retiming after takin

qmf .4748 123 2962 2082 .2971

qmf .5684 121 4779 4779 0

qmf .72 120 5226 3773 .2780

karp 0 400 643 643 0

karp .0380 400 721 605 .1609

karp .1364 386 2411 1231 .4894

karp .2139 394 1826 1289 .2941

karp .3096 394 1663 1329 .2008

karp .4572 400 4398 899 .7956

karp .5356 400 3140 565 .8200

karp .6080 371 3302 1803 .4539

meas 0 182 217 217 0

meas .0537 192 1353 773 .4286

meas .1022 181 3241 2294 .2922

meas .2208 174 5964 5676 .0483

meas .3111 189 5572 5343 .0411

meas .4240 181 7789 7700 .0114

meas .5681 173 9531 9510 .0022

meas .6066 171 10348 10348 0

Application

Table 3. Results of applyinglatencyReduction to non-deterministic graphs.

λ T Lold Lnew µl

µl λ
41

 in

e

 off-

that

via-

t for

1.1.
feedback from simulation and is not affected by the degree of non-determinacy

some specific way.

To study the relationship between buffer size (), throughput and

periodic-output latency () using the off-line method for latency-computation, w

generated a schedule forfft2.5.5 with by usingPhase1Algo and a

throughput constraint of . The value of in the off-line computation was

then varied around 265 for several values of , and was computed using the

line method. Figure 16 shows the relationship between and . It can be seen

 is minimum for a value close to 265 for almost all values, and as the de

tion of from 265 increases, also starts increasing. One can also observe tha

an increase in , deceases for the same value of , as explained in Section

B 1 T⁄()

L

λ 0.326=

1 265⁄ T

B L

L T

Figure 16. plot forfft2.5.5 with .L T– λ 0.326=

L T B

T L

B L T
42

Figure 15. Plots of vs. for FFT, QMF, Karp and Meas corresponding to
Table 3.

µl λ
43

-

ses

l

3.3. Summary

Schedule post-processing strategies for transient-reduction and latency

reduction are described in this section. An algorithm to solve TBL problem that u

one of the schedule post-processing strategies is also presented. Experimenta

results are presented that show the efficacy of the proposed strategies.
44

hed-

sual

 is

ed

 IPC

ces-

ch as

 much

ors

i-

es of

lica-

 a

inis-

ed

d in
 4. Streamlining latency analysis for contention-free systems

In this section, we present a new approach to implement the proposed sc

ule post-processing techniques using a graph-theoretic framework, unlike the u

approach of event-driven simulation. In practical multiprocessor systems, there

contention for shared communication resources. One example of this is a shar

bus. A processor must gain access to the shared bus before it can execute an

operation. The analysis we present here applies only to contention-free multipro

sors such as a fully-connected multiprocessor system. In mesh architectures, su

the Raw architecture [40], processors are connected directly to their immediate

neighbors in a mesh-design and hence the system does not in general have as

contention as a shared-bus system. So mesh architecture-based multiprocess

often result in a contention-free systems. We first introduce a few relevant defin

tions and then present recurrence relations that can be used to find starting tim

actors for different invocations during execution and hence simulation using an

event-driven simulator is not needed. The following analysis applies only to app

tions with deterministic execution times on contention-free systems. We define

deterministic, contention-free self-timed system (DCFS) as a system where there is

no contention for communication resources, the application actors have determ

tic execution times, and the execution of the application is carried out in a self-tim

manner. We model the application in a DCFS as an IPC graph, which is describe
45

as

dge

le

ump-

 the

the

tion

st-

as

 node

n an

.

ted by
Section 1.1. We model periodic excitation (input) by modeling the source node

having an execution time equal to the sample period , and adding a self-loop e

 with unit delay to the IPC graph for the application. Also the samp

period is equal to the maximum cycle mean of the graph (a reasonable ass

tion because otherwise, there will be data loss or unbounded accumulation on

system input buffers). In a DCFS, the communication actors in the IPC graph of

application can execute simultaneously as there is no contention for communica

resources in a DCFS.

This approach reduces the execution time of the presented schedule po

processing techniques considerably for a DCFS.

4.1. Notation and analysis

Let the execution time of an actor be denoted by . We define a path

an alternating sequence of edges and nodes in a directed graph, such that the

following an edge in the sequence is its sink vertex, and the sequence starts o

edge and ends on a node. The last node in the sequence is called anend node of the

path. For example, for an integer , () represents a

path, where , denote a set of edges in the directed graph, and

 denote a set of vertices in the directed graph such that

. Node is the end node of the path in this example

Suppose a path consists of a sequence of edges and nodes represen

(). Define . If , then the path

has 0 delay. For , path is a-delay pathfor some integer if it satisfies

vs

Ts

vs vs,() Gipc

Ts

v τ v()

n e1 v1 e2 v2 … vn 1– en vn, , , , , , ,

ek k, 1 … n, ,=

vk k, 1 … n, ,=

vk sink(ek), k 1 … n, ,= = vn

p

e1 v1 e2 v2 … vn 1– en vn, , , , , , , η p() delay(e1)= η 0=

η 0> p k k 0>
46

e

y

 of

le-

um

 end

o

the following two conditions.

1) For , ; (14)

2) For , . (15)

Furthermore, if a path is a -delay path, then delay of the path can be

called equal to , i.e. . This implies that the delay of path may b

multi-valued if . This is to account for the fact that if , then the dela

of path can be chosen as any number from to

 as now one can choose number of tokens in the range

on , to be included in path . Hence the delay of path may be multip

valued.

The execution time of the path , denoted by , is defined as the s

of the execution times of the nodes on the path minus the execution time of the

node. That is, .

Let denote the length of a longest (maximum execution time) -

delay path directed to . More precisely,

. (16)

Note that from the definition of the operator, if there is n

-delay path directed to .

η 1= delay ei()
i 1=

n

∑ k=

η 1> delay ei(){ } k delay ei(){ } η 1–()–
i 1=

n

∑≥ ≥
i 1=

n

∑

p k

k delay p() k≡ p

η 1> η p() 1>

p delay ei()
i 1=

n

∑
delay ei(){ } η 1–()–

i 1=

n

∑
1 to η e1 p p

p tpath p()

t path p() τ v1() τ v2() … τ vn 1–()+ + +=

θ v k,() k

v

θ v k,() max tpath p() p is a directed path tov() and delay(p)=k()(){ }()=

max θ v k,() 0=

k v
47

r

a

ng

of

re

 and

(18)

20)
Suppose that in a DCFS, the starting time of the th invocation of an acto

is denoted by .

Lemma 1: The starting time of the th invocation [32], of an actor in

DCFS, is equal to the length of the longest -delay path directed to , assumi

actor invocations are numbered starting at 1. That is,

(17)

Proof: This results follows naturally from developments in [32]. The evolution

the network can be described by the following equations ((19), (20), (21)). He

 represents the set containing all the immediate predecessors of actor

 denotes the edge directed from an actor to an actor .

; (19)

, where is an actor that satisfies either of the following two conditions.(

1. , or

2. ;

and for all actors , (21)

where (22)

and .

k a

tk a()

k tk a() a

k a

tk v() θ v k,() for k 1 2 3 …, , ,= =

IN s() s

a b,() a b

tk v() 0 for k 1<(), for all actorsv=

t1 s() 0= s

IN s() φ=

for all uεIN s() delay u s,() 1≥,

tk v() maxuεIN v() l k u v,(){ }= v

lk u v,()
tk δ– u() τ u() if k δ>()+

0 otherwise

=

δ delay u v,()=
48

start-

ple-

ques.

om-

peed-

ulate

sim-
It is easy to see that for every actor , .

Assume for , (17) holds for an actor .

Now divide the set into sets and such that for all

 and for all . Now,

using (21),

. Since

, we have that

So, by induction, (21) is true for all . Q.E.D.

4.2. Results

The approach to use the recurrence relations (19), (20), (21) to find the

ing times of all invocation for the output actor gives us a much faster way to im

ment the “simulation” needed in the proposed schedule post-processing techni

Table 4 tabulates the speedups observed by “simulation” using this approach c

pared to usual even-driven simulation approach. One can see that significant s

ups are achieved for various DSP benchmarks, when (19), (20), (21) are to calc

the generation of output samples during execution instead of using event-driven

ulation.

v t1 v() θ v 1,()=

k 1≥ v

IN v() IN1 v() IN2 v()

uεIN1 v(), k 1 delay u v,()>+ uεIN2 v(), k 1 delay u v,()≤+

tk 1+ v() maxuε IN1 v() IN2 v()+{ } l k u v,(){ }=

maxuεIN2 v() l k u v,(){ } 0=

tk 1+ v() maxuεIN1 v() tk 1 δ–+ u() τ u()+{ }=

⇒ tk 1+ v() maxuεIN1 v() θ u k 1 δ–+,() τ u()+{ }=

⇒ tk 1+ v() θ v k 1+,()=

k 1≥
49

e

oli-

nits,

a-

rm

uire-

mic

with

t the

ents
 5. Problem formulation and overview of model

In polymorphous computing architectures (PCA), various attributes of th

architecture can be varied, such as inter-processor message routing, caching p

cies, scheduling policies, processor voltages, resource allocation to computing u

and architectural support for synchronization during inter-processor communic

tion. A polymorphous computing architecture can be a particularly useful platfo

for developing a computing system where applications and the performance req

ments keep changing as one can adaptively configure the PCA to suit the dyna

constraints and objectives. In this section, we first define a problem that deals

execution of an application on a polymorphous computing architecture such tha

specified performance requirements are satisfied, where performance requirem

Application Speedup

fft1 34

fft2 48

fft3 52

qmf 25

karp 42

Table 4. Speedups for various benchmarks.
50

on

odel

ca-

imes

fig-

ion

t the

., con-

e.g.,

ill

nd

ap-

an be

can

upon

om-

be

 the

puta-
may vary over time and the application may have tasks with stochastic executi

times. Then we present a general model as a solution to the problem and this m

is shown to be efficient and powerful enough to be able to handle diverse appli

tions, through analysis and experiments.

The actors in the application are assumed to have stochastic execution t

with distributions that may vary slowly over time. The computing unit is a recon

urable architecture, and we have to find a mapping of the actors in the applicat

onto the processors in the reconfigurable architecture and the configuration tha

architecture should assume, such that all performance-related constraints (e.g

straints on power, resource usage or throughput) are satisfied and objectives (

maximizing throughput or minimizing latency) are optimized. Henceforth, we w

refer to this problem as the polymorphous computing architecture mapping (PCA

mapping) problem.Moreover, performance requirements (i.e., sets of objectives a

constraints), can also change during the execution. As can be seen, the PCA m

ping problem is quite general in nature and even very restricted special cases c

proved to be NP-complete.

The approach suggested in this report, is also very general in nature and

handle diverse applications and different performance requirements. It is based

taking feedback from the execution of the application and/or using mappings c

puted during earlier executions and modifying the mappings adaptively. It is to

noted that one can not apply relatively sophisticated mapping strategies during

execution of the application as those techniques will take away excessive com
51

-

 our

ting

from

ards

he

con-

able

ches-

te-

l)

struct

g-

ob-

we

f the

sors.

w

was
tional resources away from the application itself. To address this trade-off (thor

oughness of dynamic optimization vs. resources drained from the application),

model of the PCA mapping problem also accounts for the time spent in compu

efficient adaptations of mappings at run-time on the basis of feedback obtained

execution and identification of bottlenecks, and hence always tries to move tow

optimal solution. All the reported experiments were done on an abstraction of t

Raw architecture [40].

The Raw microprocessor is a set of interconnected tiles, each of which

tains instruction and data memories, an arithmetic logic unit, registers, configur

logic, and a programmable switch that supports both dynamic and compiler-or

trated static routing [40]. The tiles are connected with programmable, tightly in

grated interconnects. Each tile supports multigranular (bit-, byte- and word-leve

operations and programmers can use the configurable logic in each tile to con

operations uniquely suited to a particular application. This high degree of confi

urabilty in the Raw processor system makes it a good choice for PCA in our pr

lem.

In this report, to experiment on our model for the PCA mapping problem,

used an abstraction of the Raw architecture that incorporates salient features o

Raw architecture such as the programmability of interconnects between proces

For experiments, the self-timed execution of applications on this abstracted Ra

architecture was simulated. This self-timed execution on the Raw architecture

simulated using the IPC graph model as described in Section 1.1.
52

eak

s a

en

r

pair

rre-

or-

l

ized

s in a

cord-

in a
5.1. Problem formulation

A set of relevant metrics, such as {latency, throughput, average power, p

power, number of resources,...}, is denoted by . If a certain metric appears a

constraint with aconstraint valueto be satisfied when the application executes, th

this metric is referred to as aconstraint metricand the value as a constraint value fo

that particular metric. A constraint value belongs to the set of real numbers. A

of constraint metric and constraint value is called aconstraint pair. For example,

 denotes a constraint pair, where is a constraint metric and is the co

sponding constraint value. A sequence of constraint pairs is referred to as acon-

straint vector, and is denoted by , where

 represent any metrics in , and represent the c

responding constraint values, for , where is the number of al

constraint pairs. This sequence of constraint pairs in a constraint vector is priorit

such that a is a higher priority constraint pair than a constraint pair

if , for in a constraint vector

. (23)

That is, a constraint pair that appears earlier in the sequence of constraint pair

constraint vector has higher priority than the one that appears later. Note that ac

ing to this definition, the same metric may appear in many constraint pairs with

given constraint vector. A metric that is to be optimized after all constraints

have been satisfied is called aresidual objective. A goal is an ordered pair

M

m c,() m c

V m1 c1,() m2 c2,() … mK cK,(), , ,[]=

m1 m2 … mK, , , K M c1 c2 … cK, , ,

Kε 0 1 … N, , ,{ } N

mi ci,() mj cj,()

i j< i j 0 1 … N, , ,{ }∈,

V m1 c1,() m2 c2,() … mK cK,(), , ,[]=

mR

g

53

e is

 can

ive.

tion

r

 a

hich

ple-

ider

c-

g a

-

ded

ure.

ing
 where is the constraint vector and is a residual objective. If ther

no residual objective, then the goal is composed of only a constraint vector and

be represented by . Here represents the absence of a residual object

Also, without loss of generality, the metrics are such that the associated optimiza

problems are tominimize the metric (i.e., a lower value of a metric is always bette

than a higher value). Thus for any metric, if are values of the metric, then

denotes that value is no worse than value for the metric. Metrics for which

higher value is more desirable can be transformed into some other metric for w

lower value is the better one. For example, the throughput (average rate of com

tion of application iterations) can be re-cast as theiteration period, which is the

reciprocal of the throughput.

Example 5:Consider a set of relevant metrics , where is the

latency, is the average power consumption, and is the iteration period. Cons

the goal . In , the constraint pair

 has higher priority than the constraint pair , which in turn has

higher priority than the constraint pair . The metric is the residual obje

tive. ■

Mapping an application to a reconfigurable architecture includes definin

task-to-processor mapping along with defining the configuration of the reconfig

urable architecture. In this report, the scope of the word “configuration” is expan

to include also the mapping of the application onto the reconfigurable architect

Therefore, aconfigurationconsists of two components 1) task-to-processor mapp

V mR,() V mR

V ⊥,() ⊥

x y, x y≤

x y

M L P T, ,{ }= L

P T

g L 50,() P 100,() L 40,() P 70,() T, , , ,[]= g

L, 50() P, 100()

L 40,() T
54

d

s

cy,

tered

st to

-

ra-

the

n

ould

to-

ossi-

ge.

the

 out

se

ent
and 2) configuration of the architecture. Henceforth, the word “configuration” is

used in the above sense, unless stated otherwise. A given application, goal, an

resource set define aninstance of the PCA mapping problem. Input to the model i

an instance that may change with time. We define thedesign space as the set of all

feasible combinations of an instance and a configuration. Thesolution space for a

feasible instance is the set of all feasible configurations for that instance. Laten

throughput, average power and peak power are some of the commonly encoun

metrics. With many metrics of simultaneous relevance, the goal space is too va

be fully explored before run-time. The overall high-level view of a model is illus

trated in Figure 17. The main components of the model are theoff-line refinement

part, theconfiguration store, and theon-line refinement part.

For a given instance, not every configuration is suitable as some configu

tions may violate constraints or may not fully achieve the optimal objectives. As

goal changes for a given application, one needs to have a suitable configuratio

specifying the task-to-processor mapping and the architecture. This problem c

be undecidable, in general. Also, reconfigurability of the architecture and the s

chastic variance of execution times make the solution space consisting of all p

ble configurations for the input of a goal and a given application much more lar

Since computing a suitable configuration is performed during the execution of

applications, it adds to run-time. Hence, exhaustive search strategies are ruled

during run-time. In contrast, one needs low-complexity algorithms for finding the

configurations as the goal changes. This is taken care of by the on-line refinem
55

dify

een

a sim-

ists

to
part of the model. It consists of algorithms that find configurations for a given

instance. It also consists of feedback units shown byIdentify bottlenecks block in

Figure 17, that takes feedback from the execution of the configurations and mo

the configurations so as to better suit the goal, at regular intervals of time.

 A configuration store is used to store points in design space that have b

explored, so that one can use them later as need be. In [9], Budenske et al. use

ilar concept to store relevant data. The off-line refinement part of Figure 17 cons

of high-complexity algorithms that yield better solutions. It is acceptable for them

Off−line Algorithms

CS

STATS

Mapping
/Configuration

Execution

Application

Identify
bottlenecks

On−line algorithms
A1
A2

An

Stats

OFF−LINE REFINEMENT PART

ON−LINE REFINEMENT PART

Objective vector (O)

Figure 17. Overview.
56

es

nce

atis-

gura-

(all

lly

i-

a-

ep

tion.

erge

lgo-

ons

d up

rt-

nce

als.
be of high-complexity as they are used off-line and do not compete for resourc

with the application. In Figure 17, theSTATS unit stores statistics about application

(e.g., distributions of execution times for different actors, frequencies of occurre

of some particular regions of goal space, etc.). Off-line algorithms use these st

tics for exploring the solution space for input instances.

As soon as the goal or application changes, a search for a suitable confi

tion in the configuration store is performed. In case this search is “unsuccessful”

constraints in the goal vector are not satisfied or the residual objective is not fu

optimized), on-line algorithms generate a configuration to start with and dynam

cally refine this initial objective. If a suitable configuration exists in the configur

tion store, then it is used as a configuration to start with. On-line algorithms ke

improving the configuration that is being executed, using feedback from execu

In the meantime, off-line algorithms keep exploring areas of design space and m

the relevant information into the configuration store. They are high-complexity a

rithms that use histories of profiling information and generate better configurati

for an instance and store them in configuration store, so that they can be picke

directly from configuration store in case the same instance, or a similar one is

applied later. TheStatsunit in the on-line refinement part of the model stores sho

term statistics that can be used by on-line algorithms.

5.2. Model

The overview of the model shows that it is very adaptive in nature and he

is suitable for applications with stochastic execution times and time-varying go
57

the

good

s

xity

elated

ms.
For a practical and robust implementation of the model, a detailed formulation of

model is needed. There are still many issues to the model, such as finding out a

measure to evaluate configurations for a given instance, choosing the instance

whose configurations should be stored in configuration store, good low-comple

algorithms that can be used at run-time to find configurations, etc.

These issues are discussed in the next section in a general sense and r

problems are formulated in terms of some of well-studied mathematical proble
58

ge-

ave

e

ing

rks

ated

s.

utes

om-

-

 If
 6. Details of the model

This section deals with the detailed description and algorithms for mana

ment of various components of our model for the PCA mapping problem. We h

developed a configuration management framework that is the core to the onlin

refinement part of the model of Figure 17, and demonstrated this framework us

simple, low-complexity online algorithms for optimization of various metrics. We

have showed the efficacy of our model by experimentation on several benchma

for various goals. We have also analyzed the complexity of various problems rel

to configuration management by modeling them as some well-studied problem

6.1. Evaluation measure

We need to define some measure of how well a given configuration exec

for a particular instance. This evaluation measure should allow unambiguous c

parison between the qualities of two configurations based on the current goal.

Suppose we are given a goal , where

. (24)

We define thequality of a system configuration as the ordered pair

, where is the index of first unsatisfied constraint in the con

straint vector of that instance, and is the value obtained for the metric .

configuration satisfies all constraints in the constraint vector then

g V mR,[]=

V m1 c1,() m2 c2,() … mn cn,(), , ,[]=

C

Q C() k v,()= k 1+

v mk 1+

C

59

e

the

nfig-

n

,

. Let

rce

e of

ated

ich

cific

n of

and
, where is the value obtained for the residual objective

if or . In the following discussion, we assume that th

individual metrics over which goals are defined are totally ordered relations

(Definition 4 in Section 6.2).

In summary, the quality of a configuration is a measure of evaluation of

configuration with respect to a given instance, and given an instance and two co

urations and with qualities and for

that instance, respectively, has higher quality than if

 or . (25)

represents that configuration is of higher quality tha

configuration for instance .

Example 6:Consider an application with the relevant metrics being latency ()

average power (), and the average iteration period of the output samples ()

goal = [(L, 50), (P, 90),T], and goal = [(L, 70), (P, 100),T]. Let denote an

instance of the problem, which is composed of the given application, the resou

set associated with the PCA, and the goal . Similarly, let denote an instanc

the problem that is composed of the given application, the resource set associ

with the PCA, and the goal . Let and be two configurations, each of wh

denotes a combination of a specific configuration of the architecture and a spe

schedule according to which application should be executed on that configuratio

the architecture. Suppose further that the attributes of are = 60, = 100,

Q C() n 1 vR,+()= vR mR

mR ⊥≠ vR -∞ if mR ⊥= =

C1 C2 Q C1() k1 v1,()= Q C2() k2 v2,()=

C1 C2

k1 k2>() ((k1 k2) and (v1 v2))<=

Q C1() Q C2()
I

> C1

C2 I

L

P T

g1 g2 I 1

g1 I 2

g2 C1 C2

C1 L P
60

se

t

f

. In

one

pon

ond-

pro-

ns

 part

ed

of the

s and

ve.

oals

e

= 40; and the attributes of are = 50, = 100, and = 45. Qualities of the

configurations for instances and are as follows.

 and

 and

Therefore, and .■

6.2. Configuration store

A configuration store serves as a repository of configurations for distinc

instances. The allocation of memory in a configuration store to configurations o

instances is a fundamental problem in the management of configuration stores

this section, we develop models to solve this problem.

A configuration store can be divided into several sub-stores (sub-CSs),

for each application. One can define a weight for each application depending u

how often that application is executed and the size of the configurations corresp

ing to that application. The size of the sub-CS for an application can be directly

portional to the weight of that application. Each sub-CS has some configuratio

stored in it, one for a specific combination of goal and resource set. In the later

of this section, we assume that we are dealing with a fixed application and a fix

resource set, unless stated otherwise. This does not detract from the generality

ideas developed later as they can be generalized to include various application

resource sets using the hierarchical model of configuration store explained abo

Using this hierarchical model, a sub-CS would store configurations for various g

for a particular application and resource set. Assuming a fixed resource set, th

T C2 L P T

I 1 I 2

Q C1()
I 1

1 60,()= Q C2()
I 1

2 100,()=

Q C1()
I 2

3 40,()= Q C1()
I 2

3 45,()=

Q C2() Q C1()
I 1

> Q C2() Q C1()
I 2

<

61

figu-

ch

um

CSs

ion

ub-

ions

nd

ro-

con-

re

lgo-

lied

hose

ds on

con-

 or

we

ions
problem of finding a minimum size configuration store and the goals whose con

rations should be stored can be decomposed into several problems, one for ea

application, of finding a minimum size sub-CS for each application. The minim

size of a configuration store can be found by adding all the minimum size sub-

thus found. So, the solution to the problem of finding a minimum size configurat

store is based on the solution to the following problem.

For a particular application and resource set, find the minimum size of s

CS required for that application and the configurations to be stored in it.

To address this problem, we consider issues related to storing configurat

in a configuration store corresponding to different goals for a fixed application a

resource set.

It is beneficial to have a configuration stored in a configuration store app

priate to the present instance as in this case it can be picked up directly from the

figuration store. If no appropriate configuration is found in the configuration sto

then the most suitable of the ones that are present can be picked and on-line a

rithms can be employed to compute a more appropriate configuration for the app

instance. Assuming a fixed application and resource set, selecting the goals w

corresponding configurations should be stored in the configuration store depen

various factors such as the size of the configuration store; optimality of stored

figuration; computational resources drained from the application; the expected

observed frequency of specific goals, etc. To make the analysis more precise,

first define a few terms and formulate problems related to storage of configurat
62

tion

al

ur

ura-

.

ta-

hat

f a

n

p us

hese

ur

s in

cept-
in a configuration store. These problems relate to various aspects of configura

management such as size; choice of configurations to store; and choice of initi

configuration in the configuration store for a given goal. These problems and o

models to solve them provide fundamental analysis of the complexity of config

tion management and provide feasible, low-complexity solutions to this problem

6.2.1 Terminology and notation

Definition 1: Given two goals and , we say that isacceptable for ,

denoted , if a configuration that satisfies is an acceptable implemen

tion for . If , we can also say that covers . Given a set of goals

and a specific goal , thespaceof over (or simply, thespaceof , if is

understood) is . Thus, the space of a goal is the set of goals t

are acceptably implemented by any configuration that satisfies . The space o

goal is represented by .

This notion ofacceptability and coveremerge very naturally from the PCA

mapping problem and guide the construction and adaptation of the configuratio

store in our model. In this section, we will also explain how these concepts hel

model configuration management and how various results from the analysis of t

concepts are useful to the configuration management process.

If one observes that goals from a particular region of the goal space occ

more often, one may want to have more configurations stored that satisfy goal

that region of goal space. For some metrics related to a goal , the relevant ac

g1 g2 g1 g2

g1 g2→ g1

g2 g1 g2→ g1 g2 Γ

g g Γ g Γ

g′ Γ∈ g g′→{ } g

g

g space g()

g

63

units

th

e of

ct

f all

ple,
ability criteria might not allow much leeway compared to other metrics related to

(e.g., it may happen that some goals with throughput values as different as 10

from throughput values in are in the space of , whereas none of the goal wi

latency values as different as 5 units from latency values in are within the spac

). Therefore, in general, the space of can be of arbitrary shape. To further

develop the notion of configuration acceptability, it is useful to review concepts

relating to relations and partial orders [16].

Definition 2: A relation on two sets and is a subset of the Cartesian produ

. A relation isreflexive if for all . The relation is

symmetricif for all . The relation isanti-symmetricif

 for all . The relation istransitive if

 for all .

Definition 3: A relation that is reflexive, anti-symmetric and transitive is apartial

order, and we call a set on which a partial order is defined apartially ordered set

[16]. For example, the relation “is a descendant of” is a partial order on the set o

people, if we view individuals as being their own descendants. As another exam

the subset relation on all subsets of the set of integers is a partial order.

Definition 4: A partial order on a set is atotal orderif for all , we have

 or - that is, if every pairing of elements of can be related by . For

example the relation is a total order on the natural numbers [16].

g

g g

g

g g

R A B

A B× R A A×⊆ aRa a A∈ R

aRb implies bRa a b A∈, R

aRbandbRa imply a b= a b A∈, R

aRbandbRc imply aRc a b c A∈, ,

″ ″⊆

R A a bεA,

aRb bRa A R

″ ″≤
64

rela-

at

la-

ele-

isfy

that

a

he

r

m-
In general, for a finite set of relevant goals, and a given acceptability

tion, finding a minimal set of goals such that is

tractable and we will prove this in Section 6.2.3.1. The following result shows th

the acceptability of configurations is a particularly well-behaved relation if it is a

partial order.

Theorem 1: If we have a finite set of relevant goals, and the acceptability re

tion is a partial order, then there exists a unique, minimal set of goals

 such that

, (26)

and this set of goals can be computed in polynomial time in , the number of r

vant goals.

Proof: Suppose there are two different minimal sets, and , of goals that sat

(26). Let be a goal such that and and let be a goal such

 and . Let such that . The goal since is

minimal set. Thus, there exists a goal such that and . Since t

acceptability relation is a partial order, is acceptable for i.e., . If

, then it contradicts our assumption that is a minimal set. On the othe

hand, if , then would imply as the acceptability

relation is a partial order, which would contradict the assumption that .

Hence there is a unique minimal set that satisfies (26). Q.E.D.

If the acceptability relation is a partial order, the minimal set of goals is co

Γ

g1 g2 … gn, , ,{ } space gi()
i 1=

n

∪ Γ=

Γ

g1 g2 … gn, , ,{ }

space gi()
i 1=

n

∪ Γ=

Γ

S1 S2

g1 g1 S1∈ g1 S2∉ g2

g2 S2∈ g2 S1∉ g S2∈ g g1→ g S1∉ S1

g′ g′ S1∈ g′ g→

g′ g1 g′ g1→

g′ g1≠ S1

g′ g1= g′ g g1→ → g′ g g1= =

g1 S2∉
65

, this

ing

.

re

e

arked

ed

he

r, and

sider

notes

e-

bility

four
posed of only those goals that are not covered by any other goal in . Therefore

set of goals can be computed in polynomial time, using, for example, the follow

simple algorithm.

Construct a graph such that each goal in corresponds to a node in

All the nodes that correspond to goals in the space of a goal , where a

connected by directed edges from the node corresponding to goal . For all th

nodes, mark their immediate successors. The goals corresponding to the unm

nodes constitute the above mentioned minimal set of goals. This set of unmark

nodes can be determined by a simple traversal of .

Example 7:For a given application and the resource set, let be t

set of relevant metrics, where denotes latency, denotes the average powe

 denotes the average iteration period in the execution of the application. Con

the goals = [(L, 50), (P, 100),T], = [(L, 60), (P, 110),T], = [(L, 40), (P,

110),T)], and = [(L, 30), (P, 110),T]. The graph formed by nodes corre-

sponding to these goals is shown in Figure 18, and each edge of the graph de

that the goal corresponding to the source vertex is acceptable for the goal corr

sponding to the sink vertex. One can easily verify that in this case, the accepta

relation is a partial order, and the minimal set of goals that is needed to cover all

goals is { }, which is unique. This is in accordance with Theorem 1.■

Definition 5: Dominance relation: A point dominates a point if

, where and denote th components of and

respectively.

Γ

Gr Γ Gr

g g Γ∈

g

Gr

M L P T, ,{ }=

L P

T

g1 g2 g3

g4 Gr

g1 g4,

pεℜn
p̃εℜn

pi p̃i , for all i≤ 1 … n, ,= pi p̃i i p p̃
66

e

er.

 rela-

r of

ec-

f

and

r the
Example 8:Transitive acceptability relation.

One can see that the dominance relation is a transitive relation. Also, th

dominance relation is reflexive and anti-symmetric, which makes it a partial ord

We can have an acceptability relation between goals based on the dominance

tion where a goal is acceptable for a goal if and only if the constraint vecto

the goal dominates the constraint vector of the goal , and the residual obj

tives for both the goals are identical.

For a given application and resource set, let be the set o

relevant metrics, where denotes the latency, denotes the average power,

denotes the average iteration period in the execution of the application. Conside

g

g

g

g

1

2

3

4

Figure 18. Graph for Example 7.Gr

g1 g2

g1 g2

M L P T, ,{ }=

L P T
67

 is

e

on-

sid-

ity

e

dom-

nce a

era-

be

ticular
goals = [(L, 5), (P, 40),T], = [(L, 10), (P, 50),T], and = [(L, 10), (P, 60),

T]. Using the acceptability condition based on the dominance relation defined

above, we can see that , and which verifies that the

above relation is transitive. One can also verify that this acceptability condition

also reflexive and anti-symmetric.■

Definition 6: A point is aPareto pointfor a mapping if there

exists no other point such that

, (27)

where not all of the above inequalities are equalities [8]. The values and

denote the th components of and , respectively. We can defin

Pareto dominance of a goal over a goal as the case when satisfying all c

straints of leads to satisfying all constraints of . It can be seen that if the re

ual objectives are same, the Pareto dominance relation is similar to acceptabil

based on the dominance relation, as defined earlier. One can observe that sinc

Pareto dominance is a transitive relation, if the acceptability is based on Pareto

inance, then the acceptability relation also becomes a transitive relation and he

partial order.

Example 9:Non-transitive acceptability relation.

Suppose that we have a single constraint metric, which is the average it

tion period of the system. Thus, the constraint associated with a goal can

expressed as the desired average iteration period . Suppose that in a par

g1 g2 g3

g1 g2→ g2 g3→ g1 g3→

pεℜn φ: ℜn ℜm→

p̃εℜn

φi p̃() φi p(), i≤ 1 … m, ,=

φi p()

φi p̃() i φ p() φ p̃()

g1 g2

g1 g2

T g

T g()
68

r

long

and

traint

is

nt

t val-
implementation context, the acceptability relation is defined by

 for some positive real number . Thus, a configuration fo

 can be worse than what is desired under , and still acceptable for , as

as the deviation does not exceed the threshold . Assume that the goals

 have desired average iteration period values of ,

and . One can see that and but is not

acceptable for . Therefore, this acceptability relation is not transitive.

To make the example more elaborate, assume that there is also a cons

associated with latency , in addition to . Let the acceptability relation

now be defined by

. (28)

Furthermore, let the desired average iteration period values be ,

, , and let the desired latency values be

, and . Once again, and

 but is not acceptable for . Also, the graph induced by goals

and is non-transitive (the graph is not identical to its transitive closure) and

shown in Figure 19, where vertices A, B and C represent goals , and

respectively.■

Example 10:Transitive and symmetric acceptability relation.

A cluster of size is a maximal set of goals such that for every eleme

, there exists at least one element , such that none of the constrain

g1 g2→

T g1() T g2()– ∆T≤ ∆T

g1 g2 g2

∆T g1 g2,

g3 T g1() 5= T g2() 5 3 T∆
4

----------–=

T g3() 5 3 T∆
2

----------–= g1 g2→ g2 g3→ g1

g3

L T g1 g2→

T g1() T g2()– ∆T andL g1() L g2()– ∆L≤≤

T g1() 5=

T g2() 5 3 T∆
4

----------–= T g3() 5 3 T∆
4

----------–=

L g1() 2= L g2() 2 3 T∆
4

----------–= L g3() 2 3 T∆
2

----------–= g1 g2→

g2 g3→ g1 g3 g1 g2,

g3

g1 g2 g3

d S

g S∈ g′ S∈
69

lue

tion

the

ce.

,

n

,

nce

nt of

ch as

idate

he

omi-

omi-
ues in is different by more than units from the corresponding constraint va

in . Suppose that in a particular implementation context, the acceptability rela

between two goals is defined in the following way.

Two goals are acceptable for each other if and only if the constraint vectors of

two goals belong to the same cluster [37] of size 5 in the constraint vector spaIt

can be seen that this acceptability relation is transitive, as if and

then all of belong to the same cluster, and hence . One ca

also observe that this acceptability relation is also symmetric because if

then .■

6.2.2 On-line management and use of configurations

If we have an acceptability relation between goals based on the domina

relation, then results related to partial orders can be applied to the manageme

goals in an associated configuration store. This leads to valuable properties su

that exposed by Theorem 1. Also, the dominance relation is a very natural cand

for an acceptability relation among goals, as a configuration corresponding to t

dominating goal can be used in place of a configuration corresponding to the d

nated goal without violating any constraints. This all motivates our use of the d

CB

Figure 19. Induced graph.

A

g′ d

g

g1 g2→ g2 g3→

g1 g2 andg3, g1 g3→

g1 g2→

g2 g1→
70

for

ion

suit-

be

go-

po-

on-

n the

se

t best

n-

e

any

n-
nance relation in managing configuration stores. The following is a framework

on-line management of goals and configurations, where if a suitable configurat

for the applied goal is not found in the configuration store then a configuration

able for aweakergoal (one that is dominated by the applied goal) is looked for to

used, and so on, until one finds a suitable configuration. The following meta-al

rithm forms the core of the on-line refinement block in Figure 17. This core com

nent deals with the management of goals and configurations. This is a meta-

algorithm because specific details of the architecture, the application, and the

line adaptation algorithms are left unspecified, and can be customized based o

relevant classes of applications and architectures.

This meta-algorithm consists of the following steps.

• Initialize the variablecurrentObjectiveto be the residual objective.

• If there exist one or more configurations in the configuration store who

constraints dominate the constraints of the given goal , then select the one tha

addresses the current objective, and continue optimizing the current objective

throughon-line adaptation (while is in effect).

• Otherwise, discard the current objective, demote the lowest priority co

straint to be the new current objective (call this ademoted constraint objective,

abbreviatedDMC), and repeat Step 1.

• During on-line adaptation, if we are working on improving a DMC, and w

achieve a configuration that satisfies the associated constraint (without violating

higher-priority constraints), then promote the DMC back to being a (regular) co

g

g

71

st

 no
straint, and (if applicable) move to the next (lower priority) constraint (which mu

be a discarded DMC), and promote this to be the current objective. If there are

more constraints, then set the current objective to be the residual objective.

The detailed pseudocode for the above algorithm framework is shown in

Figure 20. This meta-algorithm maintains acurrent objectiveat all times, where the

Global variables: goal , , ; Stack ; global clock time

; time

Function onLineManagement

 /*Current goal */

Instantiate a stack . Initialize to an empty stack.

while there does not exist a , such that

constraints of dominate the constraints of {

(, ,) = demoteConstraint(,)

}

Find all , such that constraints of

dominate the constraints of . Select the one that

addresses the best and store it in .

while (){

while is not satisfied {

onLineAdaptation(, ,)

}

(, ,) = promoteConstraint(,)

}

g gc go S

t timelimit

gc m1 c1,() m2 c2,() … mK cK,() mR, , , ,[]=
g gc go= =

S S
objectivec mR=
constraintc null=

Cε Configuration store
C g

g constraintc objectivec g S

Cε Configuration store C
g

objectivec configurationc
t timelimit<() & (gc go)==

constraintc
g objectivec configurationc

g constraintc objectivec g S

Figure 20. Pseudocode for on-line configuration management.
72

i-

tric

with

 an

-

sumed

ys-

-line

e

ul to

two

tance

re

here
goal is always to improve the current objective without violating any of the prev

ously satisfied constraints. This current objective is changed to improving the me

associated with the next unsatisfied constraint once the constraint associated

the current objective is satisfied. The functiononLineAdaptationtakes a goal, objec-

tive metric, and configuration as inputs, and keeps refining the configuration in

effort to continually improve its quality (as defined by (25)). The value repre

sents the goal that has been applied to the system. In the pseudocode, it is as

that will change to the new goal vector when the goal vector applied to the s

tem changes. Pseudocode for the related functions is given in Figure 21. The on

refinement part of this configuration management framework, which continually

refines a configuration after it is picked from the configuration store, has been

implemented and some experimental results pertaining to it are discussed in

Section 6.3.

6.2.3 Models for problems related to configuration management

Here we study some fundamental versions of the problems related to th

configuration management, improve our understanding of their complexity, and

relate aspects of them to well-studied problems. For these purposes, it is helpf

define a notion of “distance” (e.g., Euclidean distance in goal space) between

goals. If the distance between a goal and another goal is less than the dis

between a third goal and the goal , then one may say that goal iscloser to

goal than . One would like to have configurations in the configuration sto

such that whole of range of goals is covered, which means that for any goal , t

gc

gc

g1 g

g2 g g

g1 g2

g

73

t the

e

 be

-

re not

re, is
is at least one goal and its configuration in the configuration store such tha

space of includes . There are two related problems regarding the size of th

configuration store.

P1. Find the minimum size configuration store and the goals that should

stored in it such that all the relevant goals are covered and,

P2.given a fixed size configuration store, find the goals whose configura

tions should be stored such that the sum of the distances of those goals that a

present in configuration store, from the closest goal present in configuration sto

Function promoteConstraint

Input goal , Stack

Output goal

constraint value

metric

constraint value

Instantiate

Output { , ,)

Function demoteConstraint

Input goal , Stack

Output goal

Instantiate a new goal

.

Output (, ,)

g m1 c1,() m2 c2,() … mK 1– cK 1–,() mK, , , ,[]= S

g′
v S.pop()=

m S.pop()=

x S.pop()=

S.push(x)

g′ m1 c1,() m2 c2,() … mK 1– cK 1–,() mK v,() m, , , , ,[]=

g′ x m

g m1 c1,() m2 c2,() … mK cK,() mR, , , ,[]= S

g′
S.push(mR)

S.push(cK)

g′ m1 c1,() m2 c2,() … mK 1– cK 1–,() mK, , , ,[]=

g′ cK mK

Figure 21. Pseudo-code for functionspromoteConstraint anddemoteCon-
straint from Figure 20.

g′ C

g′ g
74

een

ied

),
minimum. For this, one needs to have a well-defined measure of distance betw

goals.

We explain these problems in detail and reduce these to some well-stud

problems.

6.2.3.1 Analysis of the configuration management problem P1

The concept of a dominating set is useful in understanding P1.

Definition 7: For a directed graph , a subset of is adominating setif

for all , either or there exists , such that .

Definition 8: Minimum dominating set problem: Given a directed graph, find a

minimum dominating set of the graph.

Example 11:For the graph given in Figure 22, the dominating sets are (A,B), (A,C

(B,C) and (A,B,C). Minimum dominating sets for the graph are (A,B), (A,C) and

(B,C). ■

We can model problem P1 as one of the graph problems in the following

G V E,() D V

vεV vεD uεD u v,()εE

A B

C

Figure 22. Illustration for the dominating set of a graph.
75

be

onds

ongs

ting

rre-

in

a con-

l cor-

ing

m

tore,

m

Prob-

nt

all

re of
way. Construct a directed graph in the following manner. Initialize to

a set of vertices such that each vertex in corresponds to a goal , where

denotes the set of relevant goals. For each of the vertices , where corresp

to some goal , construct directed edges belonging to such that bel

to the set of vertices corresponding to the space of . Find the minimum domina

set [16] of the graph . This problem is NP-complete, but polynomial time 2-

approximation algorithms exist [17]. The set of vertices thus obtained would co

spond to the set of goals whose configurations need to be stored.

To reduce P1 from the minimum dominating set problem, for every vertex

the dominating set problem, instantiate a goal; and for every edge, instantiate

dition that the goal corresponding to the source vertex is acceptable for the goa

responding to the sink vertex. The problem P1 related to this set of goals and

acceptability relation among goals is equivalent to the given minimum dominat

set problem instance. The vertices in the given minimum dominating set proble

instance, corresponding to the goals that should be stored in the configuration s

found by solving P1, constitute a minimum dominating set for the given minimu

dominating set problem instance. This proves that the problem P1 is NP-hard.

lem P1 can be posed as a decision problem in the following manner.

Is a configuration store of size and a set of goals stored in it sufficie

for covering all the goals?

A solution to this problem can be verified by checking if the set of goals covers

the relevant goals, and checking if the set can be stored in a configuration sto

G V E,() V

V g Γ∈ Γ

vεV v

g v u,() E u

g

G

x S

S

S

76

eck-

P1

,

ure

)

ng

ng

orre-

le-
size . It can be done in polynomial time in terms of the number of goals by ch

ing for each goal if that goal or any goal that covers it is in the set . So, problem

is NP-complete.

Example 12:The instance of Problem P1 that is obtained by reduction from the

minimum dominating set instance of Example 11 has three instantiated goals

and corresponding to vertices , and , respectively. The diagram in Fig

23 shows the instantiated goals. We have, , and . The

smallest sets of goals that cover all the three goals are, , , and

, which is in accordance with the minimum dominating sets (A,B), (A,C

and (B,C), in Example 11.■

If the acceptability relation is a partial order, then the minimum dominati

set can be found in polynomial time by picking up all the vertices with no incomi

edges in the dominating set. This is in accordance with Theorem 1. The goals c

sponding to these vertices would give the minimal set of goals that covers all re

vant goals.

x

S

g1 g2

g3 A B C

g 3

gg 1 2

Figure 23. Illustration for Example 12.

g1 g2→ g2 g3→ g3 g1→

g1 g2,{ } g2 g3,{ }

g3 g1,{ }
77

oals

an

s not

 the

on-

 of

e dis-

osest

ly

goals

e are

of

ser-

om

nd

is-
The above formulation does not differentiate between cases when the g

that are being covered are at closer distances from the goals covering them th

cases where they are at larger distances unless the size of the solution found i

same.

6.2.3.2 Analysis of configuration management problem P2

We can model problem P2 as a well-defined graph-theoretic problem in

following way. Given a fixed size configuration store, there is a fixed number of c

figurations that can be stored in it. Let this number be . Consider the problem

computing goals whose configurations should be stored such that the sum of th

tances of those goals that are not present in the configuration store from the cl

goal present in the configuration store is minimum. This problem can be direct

related to one of the well-studied problem, called-median problem[20]. We

assume that there is a pre-defined way of computing distance between any two

and we are given the distances between any two goals in the goal space. Also, w

assuming that our goal space is a metric space, which has been defined in

Section 1.1.

Definition 9: k-median problem: In the k-median problem, we are given a set of

potential facility locations . Any open facility can provide an unlimited amount

a certain commodity. There is a set of clients or demand points that require

vice; client has a positive demand of commodity that must be shipped fr

one of the open facilities. If a facility at location is used to satisfy the dema

of client , the service or transportation cost incurred is proportional to the d

k

k

F

D

jεD dj

iεF

jεD
78

atis-

 at

ini-

y.

al

stan-

e cor-

and

tan-

ns

f all

nal

ed by

-

ities

e the

a-
tance from to . This distance function is non-negative, symmetric and s

fies the triangle inequality. The goal is to determine potential facility locations

which to open facilities and an assignment of clients to these facilities so as to m

mize the overall service cost.

Problem P2 can be modeled as a -median problem in the following wa

For every goal present in the goal space, instantiate a location in -dimension

space where is the dimension of goal space. The distance between any two in

tiated locations in this -dimensional space is equal to the distance between th

responding goals in the goal space. Instantiate a set of possible facility locations

initialize it to the set of all instantiated locations in the -dimensional space. Ins

tiate a set of all client locations and initialize it to the set of all instantiated locatio

in the -dimensional space.

The -dimensional space, the set of possible facility locations, the set o

client locations and the distances between any two locations in the -dimensio

space constitute an instance of the -median problem. Problem P2 can be solv

modeling it as a -median problem, as described above, and then solving that

median problem. The goals corresponding to the set of locations at which facil

should be opened, found by solving the associated -median problem, would b

answer to the problem P2.

For the simple case of two-dimensional space, polynomial-time approxim

tion algorithm with a 3-approximation factors exist [12] for -median problem.

cij i j c

k

k

n

n

n

n

n

n

n

k

k k

k

k

79

sent

. Let

re

re

em

e-
Example 13:Consider a goal space composed of three goals , and , as

shown in Figure 24. The numbers beside the edges connecting the goals repre

the distances between the goals. One can see that the triangle inequality holds

the size of the fixed size configuration store be 1 unit (i.e., the configuration sto

can store information for one goal). Problem P2 for this specific case is

Find one goal, out of , and , that should be stored in the configuration sto

such that the sum of its distances from the other two goals is minimum.

The corresponding -median problem obtained after modeling this probl

based on the concepts above is shown in Figure 25. Locations A, B and C corr

g1 g2 g3

��������
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

5

42

g

g 1

32g

Figure 24. An example goal space.

g1 g2 g3

k

������
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

5

42

A

B C

Figure 25. Illustration for Example 13.
80

 is

en

g the

ld

s an

 the

ast

e in

ring

r

axi-

ough

ore

eas-

vice

loser

var-

als

em
spond to goals , and , respectively. The set of possible facility locations

{A,B,C}, and the set of all client locations is also {A,B,C}. The distances betwe

all locations are represented by numbers beside the edges in the figure. Solvin

-median problem for would give A as the location where the facility shou

be opened. This would correspond to storing goal in the configuration store a

answer to problem P2.■

There can be several other variants of problem P2. For example, one of

variants is to find the goals whose configurations should be stored such that le

number of goals in the goal space are left uncovered.

6.2.3.3 Exploring trade-offs

Configuration management problems P1 and P2 can be viewed as extrem

the sense that in one of them we want to cover all feasible goals without conside

how large the minimum size configuration store would be (P1), and in the othe

case, we have a fixed size configuration store and we are trying to find out the m

mum number of goals that can be covered using that configuration store even th

that number could be much less than the total number of relevant goals (P2). A m

elaborate formulation would be one in which we have to pay extra cost for incr

ing the size of configuration store, but we would be gaining some additional ser

by that (e.g., now some goals that are not present in the configuration store are c

to the goals that are present in the configuration store). This way we can explore

ious trade-offs between the size of the configuration store vs. the number of go

stored in a well-defined way. Understanding the so-called facility location probl

g1 g2 g3

k k 1=

g1
81

 an

s

ust

at-

por-

et of

t of

he

g P3

ting

two

pace,

ual

tore,
would be useful in this regard.

Definition 10: Facility location problem [15]: In the facility location problem, we

are given a set of potential facility locations ; building a facility at location

has an associated nonnegative fixed cost , and any open facility can provide

unlimited amount of certain commodity. There is a set of clients or demand point

that require service; client has a positive demand of commodity that m

be shipped from one of the open facilities. If a facility at location is used to s

isfy the demand of client , the service or transportation cost incurred is pro

tional to the distance from to . The distance function is non-negative,

symmetric and satisfies the triangle inequality. The goal is to determine a subs

the set of potential facility locations at which to open facilities and an assignmen

clients to these facilities so as to minimize the overall total cost.

We define a new problem P3 so that the trade-offs between the size of t

configuration store vs. the number of goals stored can be explored by modelin

as a facility location problem. We assume that there is a defined way of compu

distance between any two goals and we are given the distances between any

goals in the goal space. Also, we are assuming that our goal space is a metric s

which is defined in Section 1.1.

Problem P3: Find the size of the configuration store and the goals that

should be stored in it such that the overall cost is minimum. The overall cost is eq

to the sum of the distances of the goals that are not stored in the configuration s

F iεF

f i

D

jεD dj

iεF

jεD

cij i j c
82

iated

g

iated

,

nal

ace.

nti-

and

f all

tion

 con-

by

that

ch

g to

ion

s

rs
from the closest goal that is stored in the configuration store plus the cost assoc

with storing goals in the configuration store.

Problem P3 can be modeled as a facility location problem in the followin

way. Let be the cost associated with storing a configuration-goal pair assoc

with goal in the configuration store. For every goal present in the goal space

instantiate a location in -dimensional space where is the dimension of goal

space. The distance between any two instantiated locations in this -dimensio

space is equal to the distance between the corresponding goals in the goal sp

Instantiate a set of possible facility locations and initialize it to the set of all insta

ated locations in the -dimensional space. Instantiate a set of all client locations

initialize it to the set of all instantiated locations in the -dimensional space.

The -dimensional space, the set of possible facility locations, the set o

client locations, the cost associated with storing any goal in the configura

store, and the distances between any two locations in the -dimensional space

stitutes an instance of the facility location problem. Problem P3 can be solved

modeling it as a facility location problem, as described above, and then solving

facility location problem. The goals corresponding to the set of locations at whi

facilities should be opened and the size of the configuration store correspondin

the cost of building those facilities, found by solving the associated facility locat

problem, would solve an associated instance of problem P3.

Example 14:Consider the same goal space we used in Example 13, which wa

composed of three goals , and and is shown in Figure 24. The numbe

wi

gi

n n

n

n

n

n

wi gi

n

g1 g2 g3
83

als.

the

m P3

h

-

als

P3

d C

a-

re.

-

beside the edges connecting the goals represent the distances between the go

One can see that the triangle inequality holds. Let the cost of storing a goal in

configuration store be the same for all the goals and be equal to 3 units. Proble

for this specific case is

Find the subset of{ , , } that should be stored in the configuration store suc

that the overall cost is minimum. This overall cost is equal to the sum of the dis

tances of the goals that are not stored in configuration store from the closest go

present in the configuration store plus the total cost of storing the goals that are

present in the configuration store.

The corresponding facility location instance obtained after modeling this

instance as a facility location problem is shown in Figure 26. Locations A, B an

correspond to goals , and , respectively. The set of possible facility loc

tions is {A,B,C}, and the set of all client locations is also {A,B,C}. The distances

between all locations are represented by numbers beside the edges in the figu

Solving the facility location problem would give {A, C} or {B, C} be the set of loca

g1 g2 g3

��������
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

5

42

A

B(3) C(3)

(3)
Figure 26. Illustration for Example 14.

g1 g2 g3
84

e

onds

,

ist

like

por-

s

the

2.2.

for

g

be

re.

on,
tions where the facilities should be opened. The cost associated with any of th

above answers is 8 units and is the minimum cost for this example. This corresp

to the optimum solution of a configuration store of size 2 and set { , } or {

} to be the set of goals that are stored in the configuration store.■

Polynomial-time algorithms with an approximation guarantee of 1.74 ex

for the facility location problem [15].

When the acceptability relation is a partial order, the formulations in

Section 6.2.3.2 and Section 6.2.3.3 have no known polynomial-time solutions un

formulation in Section 6.2.3.1. However, these formulations are nevertheless im

tant as they isolate specific concerns in the design of configuration store.

6.3. On-line algorithms

In this section, we will discuss low-complexity online refinement algorithm

that are represented by functiononLineAdaptation in Figure 20. These online algo-

rithms are responsible for the refinement of a configuration that is picked from

configuration store so that it better matches the applied goal. This is performed

according to the configuration management framework discussed in Section 6.

6.3.1 Simple low-complexity, run-time refinement approach

Here we develop low-complexity, on-line strategies based on heuristics

throughput and power optimization. Since these algorithms are employed durin

run-time, they must be of low-complexity. Also, the algorithms developed should

able to handle stochastic application behavior, and must be dynamic in structu

Our configuration management framework provides us with an initial configurati

g1 g3 g2

g3
85

nfig-

ure

e

it is

e exe-

n,

nary

a

lica-

load

cu-

e

ce

le-

-

which is refined by these on-line strategies for the objective specified by the co

uration management framework as shown in Figure 20. In this framework in Fig

20, these on-line strategies are represented by functiononLineAdaptation.These

strategies are applied while the application executes as otherwise they will tak

away too much computational resources away from the application itself. Also,

necessary to apply these on-line strategies as the application executes becaus

cution of the application is necessary to generate statistics about the applicatio

which in turn are useful in driving the reconfiguration process.

The approach of taking feedback from the execution of the application

makes these on-line methods able to handle even applications with stochastic

attributes that haveslowly-varying distributions, in addition to applications with

fixed execution times, and applications with stochastic attributes that have statio

distributions. In general, the online refinement problem can thus be viewed as

problem of tracking the dynamics of the goal and the characteristics of the app

tion.

6.3.2 Throughput optimization

Load balancing algorithms are generally designed to equally spread the

on processors and maximize their utilization while minimizing the total task exe

tion time [42]. A dynamic load balancing mechanism has to allocate tasks to th

processors dynamically as they arrive. As redistribution of tasks has to take pla

during run-time, dynamic load balancing mechanisms are usually harder to imp

ment. To demonstrate the ability of our online configuration management frame
86

mize

f

ded

pro-

 thus

 with

ter

 the

r to

n the

omly,

turns

ded

f the

gh-

n-
work, of Figure 20, we used a simple heuristic based on load balancing to opti

throughput, which is as follows.

Maximally and minimally loaded processors are identified on the basis o

past execution statistics. Then a task is chosen randomly from a maximally loa

processor and scheduled at the earliest available place on a minimally loaded

cessor. This method helps balance loads over processors. If the new schedule

formed performs better then the older schedule, then it becomes the schedule

which the system continues, and is further refined in the same way to yield bet

schedules. If this new schedule performs worse than the older schedule then in

older schedule, some other task is moved from the maximum loaded processo

minimum loaded processor and the performance of the schedule is observed i

same way as above. This way, we keep refining the schedule so as to optimize

throughput. Pseudocode for this heuristic is represented by functiononLineAdapta-

tionTr and is given in Figure 27. In the pseudocode,moveTaskTr(,) is a function

that chooses -tasks from the maximum loaded processor in a schedule rand

moves them to appropriate locations on the minimum loaded processor, and re

the modified schedule. Randomization in choosing tasks from the maximum loa

processor provides a low-complexity approach to increase the explored region o

design space. The functionexecuteTr(,) is a function that executes the applica-

tion according to schedule for an interval of time length and returns the throu

put of the application during that interval. The value of to use, depends on no

determinacy of the application (11). Generally, the more non-deterministic the

s n

n s

s l

s l

l

87

of

om

prove
application is, the longer it needs to be executed, so that more accurate value

average throughput can be calculated.

The functiononLineAdaptationTr returns a schedule that it deems most

appropriate for throughput maximization. Note that if moving any single tasks fr

the maximum loaded processor to the minimum loaded processor does not im

Function: onLineAdaptationTr
Input : Schedule , time , time

Output : Schedule

while {

if (exhausted all -tasks movements and still no
 improvement){

}

if () {

}

}

return

si timelimit l

s

told executeTr(si l,)=

sold si=

n 1=

clock timelimit<()
s moveTaskTr(sold n,)=

n

n n 1+=

s moveTaskTr(sold n,)=

t executeTr(s l,()=

t told≥

sold s=

told t=

n 1=

clock clock l+=

sold

Figure 27. Pseudo-code for throughput optimization.
88

oces-

con-

first

ards

le is

om-

 of

nica-

ling

we

 in

st,

.

sor

sis of

igher

h on-
performance then the heuristic chooses a pair of tasks to be moved to other pr

sor. This approach of progressively increasing the number of tasks to be moved

tinues whenever all combinations for a particular number of tasks have been

exhausted. This approach thus attempts to make small low-complexity changes

and if that does not improve performance, the approach gradually reaches tow

higher-complexity changes. This approach of starting off with lower complexity

changes is followed all through the algorithm whenever a change in the schedu

needed. The higher complexity changes are larger in number than small low-c

plexity changes, and help the system in escaping from local minima.

6.3.3 Power optimization

There are several factors that affect the power consumption in the class

architectures under investigation. These factors include inter processor commu

tion (IPC), the assignment of supply voltage levels to processors (if voltage sca

is an option), etc. To find a configuration that reduces the power consumption,

use an approach very similar to the one developed for throughput optimization

Section 6.3.2. While minimizing power consumption, we try to minimize IPC co

as IPC typically consumes significantly more power than normal task execution

This is achieved by selectively moving tasks from the maximally loaded proces

to the minimally loaded one, and by choosing the tasks to be moved on the ba

the IPC associated with them. The higher the IPC associated with a task, the h

its chances are of being transferred to another processor. Pseudocode for suc

line, power-optimized scheduling is shown in Figure 28. The functiononLineAdap-
89

iza-

asso-

rns

 IPC

he
tationPowerreturns a schedule that it deems most appropriate for power minim

tion. In the pseudocode,moveTaskPower(,) is a function that chooses -tasks

from the maximally loaded processor in schedule on the basis of the net IPC

ciated with them, and moves them to the minimally loaded processor, and retu

the modified schedule. This net IPC for an actor is calculated by adding all the

costs in the system in which the actor is either a source actor or a sink actor. T

Function: onLineAdaptationPower
Input : Schedule , time , time

Output : Schedule

while {

if (exhausted all -tasks movements and still no
 improvement){

}

if () {

}

}

return

si timelimit l

s

Pold executePower(si l,)=

sold si=

n 1=

clock timelimit<()
s moveTaskPower(sold n,)=

n

n n 1+=

s moveTaskPower(sold n,)=

P executePower(s l,()=

P Pold≤

sold s=

Pold P=

n 1=

clock clock l+=

sold

Figure 28. Pseudo-code for power optimization.

s n n

s

90

to

mp-

nd

 max-

case

um

n

ra-

on-

dule

e-

iated

iated

f

e

functionexecutePower(,) is a function that executes the application according

the given schedule for an interval of time length and returns the power consu

tion during that interval. Again a progressive approach similar to the on-line

throughput optimization algorithm is followed that tries out small changes first a

moves on to larger changes only when there is no further improvement.

One major difference is that the tasks to be moved are chosen from the

imally loaded processor on the basis of the IPC associated with them unlike the

with throughput optimization, where tasks are chosen randomly from the maxim

loaded processor.

6.3.4 Experimental results

Table 5 shows the results of applying the on-line throughput-optimizatio

algorithm, described in Figure 27 in conjunction with the general online configu

tion management framework of Figure 20, to various DSP benchmarks. For a n

negative integer , represents the average iteration period of the best sche

found by the throughput-optimization algorithm after schedules have been ex

cuted for a fixed amount of time each, in order to assess the throughput assoc

with them. By the same token, represents the average iteration period assoc

with the starting schedule, which is found by using standardcritical path scheduling

[37]. The critical path length is computed in terms of average execution times o

actors. It is observed that irrespective of the degree of non-determinacy of th

application, this approach finds a schedule during run-time that outperforms a

schedule generated using critical path scheduling.

s l

s l

k Tk

k

T0

λ

91

tive

xe-

n

timi-

ter-

n

wer,

s.
Similarly, Table 6 shows the results of applying the power-optimization

algorithm, described in Figure 28, to various DSP benchmarks. For a non-nega

integer , represents the average power consumed per iteration of the best

schedule found by power optimization algorithm after schedules have been e

cuted for a fixed amount of time each in order to assess the power consumptio

associated with them. The starting schedule is found, as with the throughput op

zation experiments, by using the standard critical path scheduling algorithm. In

processor communication (IPC) per time unit during the execution is taken as a

estimate for power consumption. Since IPC consumes significant amounts of po

Appli
cation

fft1 0 273 273 269 269 268 243

fft1 276 276 276 276 270 269 256

fft1 .359 306 280 280 280 280 280

qmf 0 145 145 145 142 140 140

qmf .256 156 145 145 142 142 142

qmf .568 151 151 151 131 131 131

karp 0 395 376 375 375 375 375

karp .309 421 389 389 362 341 277

karp .608 475 411 411 408 405 403

meas 0 220 187 187 187 187 185

meas .207 232 206 188 188 188 188

meas .405 247 202 196 196 196 196

Table 5. Result of applying algorithm in Figure 27 on various DSP benchmark

λ T0 T10 T20 T30 T40 T50

k Pk

k

92

roxi-

, the

ith

edul-

ig-

n in

s

and all processors are assumed to be homogeneous, and accordingly, are app

mated as consuming equal amounts of power, to a first degree of approximation

overall level of power consumption can be estimated as IPC per unit time. It is

observed that the power-optimization algorithm also is able to find schedules w

better performance than the schedules generated by standard critical path sch

ing.

The on-line adaptation framework for refining a given goal is shown in F

ure 29 and it is a part of the on-line configuration management framework show

Appli
cation

fft1 0 .274 .245 .201 .172 .168 .151

fft1 .117 .268 .200 .179 .179 .179 .179

fft1 .359 .257 .173 .173 .173 .173 .173

qmf 0 .133 .111 .105 .099 .060 .060

qmf .256 .123 .115 .103 .080 .073 .068

qmf .568 .128 .120. .076 .076 .076 .076

karp 0 .131 .131 .073 .073 .061 .061

karp .309 .122 .122 .075 .072 .065 .065

karp .608 .132 .131 .098 .096 .095 .086

meas 0 .054 .050 .026 .026 .026 .024

meas .207 .054 .054 .054 .018 .018 .009

meas .405 .059 .059 .055 .040 .021 .007

Table 6. Results of applying power optimization algorithm of Figure 28 to variou

DSP benchmarks.

λ P0 P10 P20 P30 P40 P50
93

pon

n-

 in

s

dard

cu-

 for
Figure 20. In the on-line adaptation framework shown in Figure 29, depending u

, one of the available on-line functions, such asonLineAdaptationTr or

onLineAdaptationPower, would be chosen, for on-line adaptation of the given co

figuration for the applied goal. Other details of on-line adaptation are explained

Section 6.2.

Table 7 shows the performance of our on-line adaptation framework,

together with theonLineAdaptationTrandonLineAdaptationPower functions, for

various goals applied to several DSP benchmarks. The starting schedule that i

refined is found, as with the other experiments in this section, by using the stan

critical path scheduling algorithm. The set of relevant metrics for our experi-

ments is , where denotes the average iteration period of the exe

tion and denotes the average power consumption. Experiments are reported

the following eight goals.

Input , , , , , ,

Output A refined schedule

while (){

while is not satisfied {

onLineAdaptation(, ,)

}

(, ,) = promoteConstraint(,)

}

objectivec constraintc configurationc timelimit g gc

go

t timelimit<() & (gc go)==

constraintc
g objectivec configurationc

g constraintc objectivec g S

Figure 29. On-line adaptation framework.

objectivec

M

M T P,{ }= T

P

94

the

 a

exper-

nt

at is

ber

on-

able

ed-

em-
 = {(P, 0.270), (T, 265), (P, 0.250), (T, 0.255), P}

 = {(T, 260), (P, 0.240), T}

 = {P, 0.125), (T, 180), P}

 = {(T, 165), (P, 0.110), (T, 160), P}

 = {(T, 360), (P, 0.160), (T, 355), (P, 0.155), (T, 350) P}

 = {(T, 345), P}

 = {(T, 215), (P, 0.040) T}

 = {(P, 0.053), (T, 215), (P, 0.050), (T, 210), P}

In Table 7, the column titled “Goal” represents the goal that is applied to

application. Also, for a non-negative integer , column denotes the value of

metric of the best schedule found by the on-line adaptation framework, after

schedules have been assessed by executing them for some time. For the same

iments, which are reported in Table 7, Table 8 shows the times at which differe

constraints associated with the applied goals, are satisfied. For a given goal th

applied on an application, for non-negative integers and , denotes the num

of schedules that have been executed in order to assess them before the th c

straint in the applied goal is satisfied. One can see that our on-line framework is

to meet the constraints specified in the goal within a reasonable number of sch

ules. This is in accordance with the effectiveness of our on-line algorithms as d

onstrated in experimental results earlier in this section.

g1

g2

g3

g4

g5

g6

g7

g8

k vk

k

n i ni

i

95

out-

ed

t and
 7. Conclusion and future work

In this report, we have defined a new measure of latency, called periodic-

put latency, which is more appropriate than conventional measures, for self-tim

DSP systems. We have developed of several techniques to reduce the transien

Appli
cation

Goal
Metr

ic

fft1 0 T 278 278 278 278 256 254 254

P .273 .269 .269 .269 .204 .226 .226

fft1 .359 T 309 256 251 251 251 252 259

P .242 .282 .278 .278 .278 .257 .221

qmf 0 T 145 242 198 198 186 170 170

P .133 .117 .098 .098 .088 .096 .096

qmf .256 T 142 164 162 162 153 153 153

P .136 .127 .110 .110 .110 .110 .110

karp 0 T 395 353 346 342 342 342 342

P .131 .158 .156 148 .148 .148 .148

karp .309 T 450 352 300 342 342 346 346

P .115 .155 .159 .151 .151 .148 .148

meas 0 T 220 212 201 184 184 184 184

P .054 .075 .059 .021 .021 .021 .021

meas .405 T 185 218 212 212 212 210 196

P .064 .018 .037 .037 .037 .019 .040

Table 7. Results for on-line framework tracking an applied goal.

λ v0 v10 v20 v30 v40 v50 v60

g1

g2

g3

g4

g5

g6

g7

g8
96

ed

y

exe-

for

e

te

s.

 a

be
periodic-output latency in self-timed systems. We have also proposed a way of

streamlining our scheduling strategies for deterministic, contention -free self-tim

systems using a graph-theoretic framework.

It is observed that, in general, there is an improvement in the transient b

using the transient-reduction scheme for self-timed systems with deterministic

cution times. Also, the latency-reduction scheme reduces latency significantly

both deterministic and non-deterministic systems. For the algorithm to solve th

TBL problem, there is some scope for improvement by using a more appropria

algorithm in the first stage. This has been discussed in the following paragraph

Hoang’s algorithm is greedy in nature. It tries to exploit the parallelism in

particular stage to the fullest by assigning actors to different processors if it

improves throughput. In this process, it may run out of processors and will not

Appli
cation

Goal

fft1 0 1 37 39 42 -

fft1 .359 7 56 - - -

qmf 0 8 48 - - -

qmf .256 0 13 36 - -

karp 0 4 7 9 28 28

karp .309 16 - - - -

meas 0 8 28 - - -

meas .405 3 17 17 48 -

Table 8. Results for on-line framework tracking an applied goal.

λ n1 n2 n3 n4 n5

g1

g2

g3

g4

g5

g6

g7

g8
97

h one

o

have

an ,

um

num-

 be

hese

ecu-

s for

en it

ions

seful

n the

ion

rchi-

and

ion of
able to provide any schedule that meets the throughput requirement even thoug

may exist. The constraint of not allowing any pipeline stage more than time t

execute, is more than necessary for the case of self-timed execution as one may

pipeline stages such that the time taken to execute a pipeline stage is greater th

but still the throughput of the system is greater than the throughput constraint

when executed in a self-timed manner. This would be the case when the maxim

cycle mean of the associated IPC graph is less than . Also, the increase in the

ber of pipeline stages increases the number of delays in the system, which can

related to an increase in latency. Scheduling algorithms for Phase 1 that take t

factors into account are expected to produce better results under self-timed ex

tion.

The graph-theoretic framework that streamlines our scheduling strategie

deterministic, contention-free self-timed systems, is shown to be promising wh

is applicable. The approach to “simulate” using graph-theoretic length computat

executes much faster than usual event-driven simulation, and is therefore very u

for implementation aspects of schedule post-processing strategies described i

report.

In the later part of the report, the problem of how to change the configurat

of a system where an application is executing on a polymorphous computing a

tecture, in accordance with a given set of performance requirements, is modeled

an approach to handle the PCA mapping problem for multiple applications and

diverse performance requirements is presented. We have developed a simulat

T

T

1 T⁄

T

98

ing

 of

g

met-

hes

ble

rs, or

ion

ract

ci-
this framework in conjunction with two simple, low-complexity approaches for

power and performance estimation of a polymorphous embedded multiprocess

platform. The results demonstrate the ability of the framework to systematically

adapt system configurations towards progressively better solutions for a variety

goals, even in the presence of significant uncertainties in application behavior.

Directions for future work in the PCA mapping problem include developin

a model that can handle non-trivial metrics, such as the periodic-output latency

ric defined in the initial part of the report, in a more natural way. Other approac

that can exploit the reconfigurability of the computing architecture in more flexi

ways, such as by exploiting programmable message routing between processo

by application of voltage scaling, would also be very useful.

ACKNOWLEDGEMENTS

This research has been supported by the US National Science Foundat

(9734275), and the Defense Advanced Research Projects Agency under Cont

F30602-01-C-0171 through the University of Southern California Information S

ences Institute.
99

d-
ys-

za-

eter-

m-

ine
ular
),

110,

in a
REFERENCES

[1] A. Aiken and A. Nicolau. Optimal loop parallelization. InProceedings of the
ACM Conference on Programming language Design and Implementation, 1988.

[2] F. Baccelli, G. Cohen, G. J. Olsder, and J. Quadrat.Synchronization and linear-
ity. John Wiley & Sons, Inc., 1992.

[3] S. Bakshi and D. D. Gajski, A scheduling and pipelining algorithm for Har
ware/Software Systems,Proceedings of the 10th International Symposium on S
tems Synthesis (ISSS ‘97).

[4] N. K. Bambha and S. S. Bhattacharyya, “A joint power/performance optimi
tion technique for multiprocessor systems using a period graph construct”,Proceed-
ings of the International Symposium on Systems Synthesis, pages 91-97, Madrid,
Spain, September 2000.

[5] S. Banerjee et al. Macro pipelining based scheduling on high performance h
ogeneous multiprocessor systems.IEEE transactions on signal processing,June
1995.

[6] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Data-
flow Graphs, Kluwer Academic Publishers, 1996.

[7] S. H. Bokhari, Partitioning problems in parallel, pipelined, and distributed co
puting.IEEE Transactions on Computers, Jan. 1988.

[8] R. K. Brayton and R. Spence,Sensitivity and Optimization, Elsevier Scientific
Publishing Company, 1980.

[9] J. R. Budenske, R. S. Ramanujan, and H. J. Siegel, “On-Line Use of Off-L
Derived Mappings for Iterative Automatic Target Recognition Tasks and a Partic
Class of Hardware Platforms”,6th Heterogeneous Computing Workshop (HCW’97
co-sponsors: IEEE Computer Society and Office of Naval Research, pp. 96-
Geneva, Switzerland, Apr. 1997.

[10] G. C. Buttazza and M. Caccamo, Minimizing aperiodic response times
Firm Real-time Environment,IEEE Transactions on Software Engineering,Vol 25,
No 1, Jan/Feb 1999, pp. 22-32.
100

-

a-
m-

om-

om-

lity

gnal

l-

-
elax-

es-

ro-
ig-
[11] K. C. Cain, J. A. Torres, and R. T. Williams.RT_STAP: Real-time space-time
adaptive processing benchmark.Technical Report MTR 96B0000021, The
MITRECorporation, February 1997.

[12] M. Charikar and S. Guha. improved combinatorial algorithms for facility loc
tion and k-median problems.Proc. 40th Annual Symposium on Foundations of Co
puter Science, 378-388, 1999.

[13] A. Choudhry et al. Optimal processor assignment for a class of pipelined c
putations,IEEE transactions on parallel and distributed systems.April 1994.

[14] A. Choudhry et al. Optimal processor assignment for a class of pipelined c
putations,IEEE Transactions on parallel and distributed systems. April 1994.

[15] F. Chudak, “Improved approximation algorithms for uncapaciateted faci
location”, In R. E. Bixby, E. A. Boyd and R. Z. Rios-Mercado, eds.,Integer Pro-
gramming and Combinatorial Optimization, Springer LNCS Vol. 1412, 180-194,
1998.

[16] T. Cormen et al.Introduction to Algorithms, McGraw Hill, 2000.

[17] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the
Theory of NP-Completeness,W. H. Freeman and company, 1999.

[18] S. Goddard,On the management of latency in the synthesis of Real-time Si
processing systems from processing graphs,Ph.D. Dissertation, University of North
Carolina at Chapel Hill, Department of Computer Science, 1998.

[19] P. Hoang,Compiling real time digital signal processing applications onto mu
tiprocessor systems, Ph.D. thesis.University of California at berkeley, June 1992.

[20] K. Jain and V. V. Vazirani, “Approximation algorithms for metric Facility loca
tion and k-median problems using the primal-dual scheme and Lagrangian r
ation”, Proc. Foundations of Computer Science, 1999.

[21] B. K. Kim, Control latency for task assignment and scheduling of multiproc
sor real-time control systems,International Journal of Systems Science, vol. 30, no.
1, pp. 123-130, Jan. 1999.

[22] K. Konstantinides et al., Task allocation and Scheduling Models for Multip
cessor Digital Signal Processing,IEEE transactions on Acoustics, Speech, and S
nal Processing, Vol 38, No.12, Dec 1990, pp. 2151-2161.
101

ri-

in-

s

Dis-

il-

on-
[23] E. A. Lee, “Consistency in dataflow graphs”,IEEE Transactions on Parallel
and Distributed Systems, April, 1991.

[24] C. Leiserson and J. Saxe, Retiming synchronous circuitry.Algorithmica,6:5-
35, 1991.

[25] V. Madisetti,VLSI Digital Signal Processors. IEEE Press, 1995.

[26] C. L. McCreary, A. A. Kahn, J. J. Thompson and M. E. McArdle, “A Compa
son of Heuristics for Scheduling DAGS on Multiprocessors”,International Parallel
Processing Symposium, 1994.

[27] G. D. Micheli, Synthesis and Optimization of Digital Circuits.McGraw-Hill,
1994.

[28] M. D Natale, J. A. Stankovic, “Scheduling distributed real-time tasks with m
imum jitter”, IEEE Transactions on Computers, Volume 49, Issue: 4, April 2000,
pp. 303 -316.

[29] A. Papoulis, “Probability, Random variables, and Stochastic processe”,
McGraw-Hill, 1991.

[30] J. L. Peterson,Petri Net Theory and Modeling of Systems, Prentice-Hall Inc.,
Englewoods Cliffs, New Jersey, 1981.

[31] L. L. Peterson and B. S. Davie,Computer networks: A Systems Appraoch,Mor-
gan Kaufmann, 1996.

[32] S. Rajsbaum, M. Sidi, On the Performance of Synchronized Programs in
tributed Networks with Random Processing Times and Transmission Delays,IEEE
Trans. on Parallel and Distributed Systems, Vol. 5, No. 9, Sept. 1994, pp. 939-950.

[33] R. Reiter, Scheduling parallel computations.Journal of the association for
computing machinery, October 1968.

[34] D. B. Shmoys, E. Tardos, and K. I. Aardal. Approximation algorithms for fac
ity location problems.Proc. 29th ACM Symp. on Theory of Computing,265-274,
1997.

[35] G. N. Srinivasa Prasanna, Compilation of Parallel Multimedia Computati
Extending Retiming Theory and Amdahl’s Law,ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming, 1997, pp 180-192.
102

in
lec-
ley,

g

par-

ed-

.
ll to

ted

the
[36] S. Sriram, “Minimizing Communication and Synchronization Overhead
Multiprocessors for Digital Signal Processing,” Ph.D. Thesis, Department of E
trical Engineering and Computer Sciences, University of California at Berke
1995.

[37] S. Sriram and Shuvra S. Bhattacharyya,Embedded Multiprocessors:Schedulin
and Synchronization, Marcel Dekker, 2000.

[38] J. Subhlok and G. Vondron, Optimal latency-throughput trade-offs for data
allel pipelines,Proceedings of SPAA’ 96, June 96.

[39] F. M. Tsou et al., “Design and simulation of an efficient real-time traffic sch
uler with jitter and delay guarantees”,IEEE Transactions on Multimedia,Volume 2
Issue 4, Dec. 2000, pp. 255-266.

[40] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M
Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe and A. Agarwal, “Baring it a
Software: Raw Machines”,IEEE Computer, September 1997, pp. 86-93.

[41] Ti-Yen and Wayne Wolf, Performance estimation for Real-Time distribu
embedded systems,IEEE Transactions on parallel and distributed systems,vol. 9,
No.11, Nov1998, pp.1125-1136.

[42] A. Y. Zomaya, “Parallel and Distributed Computing: The Scene, the Props,
Players,”Parallel and Distributed Computing Handbook,A.Y. Zomaya, ed., pp. 5-
23, New York: McGraw-Hill, 1996.
103

	System Synthesis for Polymorphous Computing Architectures
	Sumit Lohani and Shuvra S. Bhattachrayya
	Department of Electrical and Computer Engineering, and
	Institute for Advanced Computer Studies
	University of Maryland, College Park
	{slohani,ssb}@eng.umd.edu
	Abstract

	1. Introduction
	1.1. Definitions and notation
	, (1)
	, (2)
	, and (3)
	, (4)
	Example 1: Figure 1 shows an example of a dataflow graph. Numbers beside edges indicate non-zero ...
	Figure 1. An example of a dataflow graph.

	Self-timed execution:
	Example 2: Figure 2 shows an application graph that has 8 actors and the mapping of these actors ...
	Figure 2. An example application graph.
	Figure 3. Self-timed execution.
	Figure 4. An example of an application graph and an associated self-timed schedule. The numbers o...
	Figure 5. IPC graph constructed from application graph of Figure 4. Numbers besides communication...

	, (5)

	1.2. Latency in literature
	for all . (6)
	If , then . (7)
	For all such that , we have . (8)
	For all , , where and . That is, at every time instant, the buffer population is bounded by . (9)
	Figure 6. Illustration for a system with no output buffer.
	Figure 7. Illustration for latency, throughput and output buffer.

	1.3. Overview

	2. Background
	3. Algorithm and experimental results
	3.1. Phase 1
	3.2. Phase2
	3.2.1 Transient-reduction scheme
	Figure 8. Pseudocode for transient-reduction post-processing.
	Figure 9. Pseudocode for function generateSchedule.
	Example 3: Figure 10 shows the self-timed execution pattern when first-iteration actors are used ...
	Figure 10. Self-timed execution with first-iteration actors denoted by T.
	Figure 11. Pseudocode to find minimum-transient schedule for a given .
	Table 1. Results of the algorithm described in Figure 11 for various benchmarks with deterministi...

	, (10)

	3.2.2 Latency-reduction scheme
	, (11)
	. (12)
	, (13)
	Table 2. Results for latency-reduction using a method similar to transient-reduction approach for...
	Figure 12. Pseudocode for latency-reduction post-processing.

	Example 4: Figure 13 illustrates these concepts. Figure 13(a) shows an example dataflow graph. Th...
	Figure 13. Illustration for retiming.
	Figure 14. Pseudocode to solve the TBL problem.
	Table 3. Results of applying latencyReduction to non-deterministic graphs.
	Figure 15. Plots of vs. for FFT, QMF, Karp and Meas corresponding to Table�3.
	Figure 16. plot for fft2.5.5 with .

	3.3. Summary

	4. Streamlining latency analysis for contention-free systems
	4.1. Notation and analysis
	1) For , ; (14)
	2) For , . (15)
	. (16)
	Lemma 1: The starting time of the th invocation [32], of an actor in a DCFS, is equal to the leng...

	(17)
	Proof: This results follows naturally from developments in [32]. The evolution of the network can...
	; (19)
	, where is an actor that satisfies either of the following two conditions. (20)
	and for all actors , (21)
	where (22)

	4.2. Results
	Table 4. Speedups for various benchmarks.

	5. Problem formulation and overview of model
	5.1. Problem formulation
	. (23)
	Example 5: Consider a set of relevant metrics , where is the latency, is the average power consum...
	Figure 17. Overview.

	5.2. Model

	6. Details of the model
	6.1. Evaluation measure
	. (24)
	or . (25)
	Example 6: Consider an application with the relevant metrics being latency (), average power (), ...

	6.2. Configuration store
	6.2.1 Terminology and notation
	Definition 1: Given two goals and , we say that is acceptable for , denoted , if a configuration ...
	Definition 2: A relation on two sets and is a subset of the Cartesian product . A relation is ref...
	Definition 3: A relation that is reflexive, anti-symmetric and transitive is a partial order, and...
	Definition 4: A partial order on a set is a total order if for all , we have or - that is, if eve...
	Theorem 1: If we have a finite set of relevant goals, and the acceptability relation is a partial...

	, (26)
	Example 7: For a given application and the resource set, let be the set of relevant metrics, wher...
	Figure 18. Graph for Example 7.

	Definition 5: Dominance relation: A point dominates a point if , where and denote th components o...
	Example 8: Transitive acceptability relation.
	Definition 6: A point is a Pareto point for a mapping if there exists no other point such that
	, (27)
	Example 9: Non-transitive acceptability relation.
	. (28)
	Figure 19. Induced graph.

	Example 10: Transitive and symmetric acceptability relation.

	6.2.2 On-line management and use of configurations
	Figure 20. Pseudocode for on-line configuration management.
	Figure 21. Pseudo-code for functions promoteConstraint and demoteConstraint from Figure 20.

	6.2.3 Models for problems related to configuration management
	P1. Find the minimum size configuration store and the goals that should be stored in it such that...
	P2. given a fixed size configuration store, find the goals whose configurations should be stored ...
	6.2.3.1 Analysis of the configuration management problem P1
	Definition 7: For a directed graph , a subset of is a dominating set if for all , either or there...
	Definition 8: Minimum dominating set problem: Given a directed graph, find a minimum dominating s...
	Example 11: For the graph given in Figure 22, the dominating sets are (A,B), (A,C), (B,C) and (A,...
	Figure 22. Illustration for the dominating set of a graph.

	Example 12: The instance of Problem P1� that is obtained by reduction from the minimum dominating...
	Figure 23. Illustration for Example 12.

	6.2.3.2 Analysis of configuration management problem P2
	Definition 9: k-median problem: In the k-median problem, we are given a set of potential facility...
	Example 13: Consider a goal space composed of three goals , and , as shown in Figure 24. The numb...
	Figure 24. An example goal space.
	Figure 25. Illustration for Example 13.

	6.2.3.3 Exploring trade-offs
	Definition 10: Facility location problem [15]: In the facility location problem, we are given a s...
	Example 14: Consider the same goal space we used in Example 13, which was composed of three goals...
	Figure 26. Illustration for Example 14.

	6.3. On-line algorithms
	6.3.1 Simple low-complexity, run-time refinement approach
	6.3.2 Throughput optimization
	Figure 27. Pseudo-code for throughput optimization.

	6.3.3 Power optimization
	Figure 28. Pseudo-code for power optimization.

	6.3.4 Experimental results
	Table 5. Result of applying algorithm in Figure 27 on various DSP benchmarks.
	Table 6. Results of applying power optimization algorithm of Figure 28 to various DSP benchmarks.
	Figure 29. On-line adaptation framework.

	Table 7. Results for on-line framework tracking an applied goal.
	Table 8. Results for on-line framework tracking an applied goal.

	7. Conclusion and future work
	ACKNOWLEDGEMENTS

	REFERENCES
	[1] A. Aiken and A. Nicolau. Optimal loop parallelization. In Proceedings of the ACM Conference o...
	[2] F. Baccelli, G. Cohen, G. J. Olsder, and J. Quadrat. Synchronization and linearity. John Wile...
	[3] S. Bakshi and D. D. Gajski, A scheduling and pipelining algorithm for Hardware/Software Syste...
	[4] N. K. Bambha and S. S. Bhattacharyya, “A joint power/performance optimization technique for m...
	[5] S. Banerjee et al. Macro pipelining based scheduling on high performance heterogeneous multip...
	[6] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs, Kl...
	[7] S. H. Bokhari, Partitioning problems in parallel, pipelined, and distributed computing. IEEE ...
	[8] R. K. Brayton and R. Spence, Sensitivity and Optimization, Elsevier Scientific Publishing Com...
	[9] J. R. Budenske, R. S. Ramanujan, and H. J. Siegel, “On-Line Use of Off-Line Derived Mappings ...
	[10] G. C. Buttazza and M. Caccamo, Minimizing aperiodic response times in a Firm Real-time Envir...
	[11] K. C. Cain, J. A. Torres, and R. T. Williams. RT_STAP: Real-time space-timeadaptive processi...
	[12] M. Charikar and S. Guha. improved combinatorial algorithms for facility location and k-media...
	[13] A. Choudhry et al. Optimal processor assignment for a class of pipelined computations, IEEE ...
	[14] A. Choudhry et al. Optimal processor assignment for a class of pipelined computations, IEEE ...
	[15] F. Chudak, “Improved approximation algorithms for uncapaciateted facility location”, In R. E...
	[16] T. Cormen et al. Introduction to Algorithms, McGraw Hill, 2000.
	[17] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Com...
	[18] S. Goddard, On the management of latency in the synthesis of Real-time Signal processing sys...
	[19] P. Hoang, Compiling real time digital signal processing applications onto multiprocessor sys...
	[20] K. Jain and V. V. Vazirani, “Approximation algorithms for metric Facility location and k-med...
	[21] B. K. Kim, Control latency for task assignment and scheduling of multiprocessor real-time co...
	[22] K. Konstantinides et al., Task allocation and Scheduling Models for Multiprocessor Digital S...
	[23] E. A. Lee, “Consistency in dataflow graphs”, IEEE Transactions on Parallel and Distributed S...
	[24] C. Leiserson and J. Saxe, Retiming synchronous circuitry. Algorithmica, 6:5- 35, 1991.
	[25] V. Madisetti, VLSI Digital Signal Processors. IEEE Press, 1995.
	[26] C. L. McCreary, A. A. Kahn, J. J. Thompson and M. E. McArdle, “A Comparison of Heuristics fo...
	[27] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.
	[28] M. D Natale, J. A. Stankovic, “Scheduling distributed real-time tasks with minimum jitter”, ...
	[29] A. Papoulis, “Probability, Random variables, and Stochastic processes”, McGraw-Hill, 1991.
	[30] J. L. Peterson, Petri Net Theory and Modeling of Systems, Prentice-Hall Inc., Englewoods Cli...
	[31] L. L. Peterson and B. S. Davie, Computer networks: A Systems Appraoch, Morgan Kaufmann, 1996.
	[32] S. Rajsbaum, M. Sidi, On the Performance of Synchronized Programs in Distributed Networks wi...
	[33] R. Reiter, Scheduling parallel computations. Journal of the association for computing machin...
	[34] D. B. Shmoys, E. Tardos, and K. I. Aardal. Approximation algorithms for facility location pr...
	[35] G. N. Srinivasa Prasanna, Compilation of Parallel Multimedia Computation- Extending Retiming...
	[36] S. Sriram, “Minimizing Communication and Synchronization Overhead in Multiprocessors for Dig...
	[37] S. Sriram and Shuvra S. Bhattacharyya, Embedded Multiprocessors:Scheduling and Synchronizati...
	[38] J. Subhlok and G. Vondron, Optimal latency-throughput trade-offs for data parallel pipelines...
	[39] F. M. Tsou et al., “Design and simulation of an efficient real-time traffic scheduler with j...
	[40] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch...
	[41] Ti-Yen and Wayne Wolf, Performance estimation for Real-Time distributed embedded systems, IE...
	[42] A. Y. Zomaya, “Parallel and Distributed Computing: The Scene, the Props, the Players,” Paral...

